Advertisements
Advertisements
प्रश्न
Find the equations of the two lines through the origin which intersect the line `(x - 3)/2 = (y - 3)/1 = z/1` at angles of `pi/3` each.
उत्तर
Given, equation of line:
`(x - 3)/2 = (y - 3)/1 = z/1` = x
∴ x = 2r + 3
y = r + 3
z = r
So, (2r + 3, r + 3, r) is the direction ratio of two lines that intersect at `pi/3` with given line and passes through (0,0).
∴ Angle between the line and unknown lines is `pi/3`.
Direction ratio of line is (2,1,1)
`|a| = sqrt(2^2 + 1^2 + 1^2) = sqrt(6)`
`|b| = sqrt((2r + 3)^2 + (r + 3)^2 + r^2)`
= `sqrt(6r^2 + 18 + 18)`
`cos pi/3 = (a*b)/(|a||b|)`
= `1/2 = (4r + 6 + r + 3 + r)/(sqrt(6)sqrt(6r^2 + 18r + 18)`
= `1/2 (6r + 9)/(6sqrt(r^2 + 3r + 3)`
∴ `sqrt(r^2 + 3r + 3) = 3r + 3`
= `r^2 + 3r + 3`
= `4r^2 + 9 + 12r` = 0
= `3r^2 + 6 + 9r` = 0
= `r^2 + 3r + 2`
∴ `(r + 1)(r + 2)` = 0
So, direction ratios are (−1, 1, −2) and (1, 2, −1)
Lines are `(x - 0)/(-1) = (y - 0)/1 = (z - n)/(-2)` and `(x - 0)/1 = (y - 0)/2 = (z - 0)/(-1)`.
APPEARS IN
संबंधित प्रश्न
Name the octants in which the following points lie:
(1, 2, 3), (4, –2, 3), (4, –2, –5), (4, 2, –5), (–4, 2, –5), (–4, 2, 5),
(–3, –1, 6), (2, –4, –7).
The x-axis and y-axis taken together determine a plane known as_______.
Find the image of:
(–5, 0, 3) in the xz-plane.
Planes are drawn parallel to the coordinate planes through the points (3, 0, –1) and (–2, 5, 4). Find the lengths of the edges of the parallelepiped so formed.
Find the distances of the point P(–4, 3, 5) from the coordinate axes.
Find the points on z-axis which are at a distance \[\sqrt{21}\]from the point (1, 2, 3).
Show that the points A(3, 3, 3), B(0, 6, 3), C(1, 7, 7) and D(4, 4, 7) are the vertices of a square.
Find the coordinates of the point which is equidistant from the four points O(0, 0, 0), A(2, 0, 0), B(0, 3, 0) and C(0, 0, 8).
Find the locus of P if PA2 + PB2 = 2k2, where A and B are the points (3, 4, 5) and (–1, 3, –7).
Verify the following:
(5, –1, 1), (7, –4,7), (1, –6,10) and (–1, – 3,4) are the vertices of a rhombus.
Write the distance of the point P(3, 4, 5) from z-axis.
Write the coordinates of the foot of the perpendicular from the point (1, 2, 3) on y-axis.
Find the ratio in which the line segment joining the points (2, 4,5) and (3, −5, 4) is divided by the yz-plane.
Find the point on y-axis which is at a distance of \[\sqrt{10}\] units from the point (1, 2, 3).
Find the point on x-axis which is equidistant from the points A (3, 2, 2) and B (5, 5, 4).
The ratio in which the line joining (2, 4, 5) and (3, 5, –9) is divided by the yz-plane is
What is the locus of a point for which y = 0, z = 0?
If a line makes an angle of 30°, 60°, 90° with the positive direction of x, y, z-axes, respectively, then find its direction cosines.
The x-coordinate of a point on the line joining the points Q(2, 2, 1) and R(5, 1, –2) is 4. Find its z-coordinate.
A line makes equal angles with co-ordinate axis. Direction cosines of this line are ______.
If a line makes angles `pi/2, 3/4 pi` and `pi/4` with x, y, z axis, respectively, then its direction cosines are ______.
Find the angle between the lines whose direction cosines are given by the equations l + m + n = 0, l2 + m2 – n2 = 0
If a variable line in two adjacent positions has direction cosines l, m, n and l + δl, m + δm, n + δn, show that the small angle δθ between the two positions is given by δθ2 = δl2 + δm2 + δn2
If l1, m1, n1 ; l2, m2, n2 ; l3, m3, n3 are the direction cosines of three mutually perpendicular lines, prove that the line whose direction cosines are proportional to l1 + l2 + l3, m1 + m2 + m3, n1 + n2 + n3 makes equal angles with them.
If the directions cosines of a line are k, k, k, then ______.
The sine of the angle between the straight line `(x - 2)/3 = (y - 3)/4 = (z - 4)/5` and the plane 2x – 2y + z = 5 is ______.
The vector equation of the line through the points (3, 4, –7) and (1, –1, 6) is ______.
If the foot of perpendicular drawn from the origin to a plane is (5, – 3, – 2), then the equation of plane is `vecr.(5hati - 3hatj - 2hatk)` = 38.