Advertisements
Advertisements
प्रश्न
If a variable line in two adjacent positions has direction cosines l, m, n and l + δl, m + δm, n + δn, show that the small angle δθ between the two positions is given by δθ2 = δl2 + δm2 + δn2
उत्तर
We have, l, m, n and l + δl, m + δm, n + δn, as direction cosines of a variable line of two different positions.
∴ l2 + m2 + n2 = 1 ......(i)
And (l + δ1)2 + (m + δm)2 + (n + δn)2 = 1 ......(ii)
⇒ l2 + m2 + n2 + δl2 + δn2 + 2(lδl + mδm + nδn) = 1
⇒ δl2 + δm2 + δn2 = – 2(lδl + ,m + nδn) .....[∵ l2 + m2 + n2 = 1]
⇒ lδl + mδm + nδn = `(-1)/2` (δl2 + δm2 + δn2) ......(iii)
Now `veca` and `vecb` are unit vectors along a line with direction cosines l, m, n and (l + δl), (m + δm), (n + δn), respectively.
∴ `veca = lhati + mhatj + nhatk` and `vecb = (l + deltal)hati + (m + mdelta)hatj + (n + deltan)hatk`
⇒ cos δθ = (l(l + δl) + m(m + δm) + n(n + δn)
= (l2 + m2 + n2) + (lδl + mδm + nδn)
= `1 - 1/2 (deltal^2 + deltam^2 + deltan^2)` .....[Using equation (iii)]
⇒ 2(1 – cos δθ) = (δ12 + δm2 + δn2)
⇒ `2.2 sin^2 (δtheta)/2` = δ12 + δm2 + δn2
⇒ `4((deltatheta)/2)^2 = deltal^2 + deltam^2 + deltan^2` .....`["Since" (deltatheta)/2 "is small," sin (deltatheta)/2 = (deltatheta)/2]`
⇒ δθ2 + δl2 + δm2 + δn2
APPEARS IN
संबंधित प्रश्न
Three vertices of a parallelogram ABCD are A (3, –1, 2), B (1, 2, –4) and C (–1, 1, 2). Find the coordinates of the fourth vertex.
If the origin is the centroid of the triangle PQR with vertices P (2a, 2, 6), Q (–4, 3b, –10) and R (8, 14, 2c), then find the values of a, b and c.
Name the octants in which the following points lie: (5, 2, 3)
Name the octants in which the following points lie:
(–5, 4, 3)
Find the image of:
(–2, 3, 4) in the yz-plane.
A cube of side 5 has one vertex at the point (1, 0, –1), and the three edges from this vertex are, respectively, parallel to the negative x and y axes and positive z-axis. Find the coordinates of the other vertices of the cube.
Find the point on y-axis which is equidistant from the points (3, 1, 2) and (5, 5, 2).
Find the coordinates of the point which is equidistant from the four points O(0, 0, 0), A(2, 0, 0), B(0, 3, 0) and C(0, 0, 8).
Show that the points (a, b, c), (b, c, a) and (c, a, b) are the vertices of an equilateral triangle.
Verify the following:
(0, 7, –10), (1, 6, –6) and (4, 9, –6) are vertices of an isosceles triangle.
Show that the plane ax + by + cz + d = 0 divides the line joining the points (x1, y1, z1) and (x2, y2, z2) in the ratio \[- \frac{a x_1 + b y_1 + c z_1 + d}{a x_2 + b y_2 + c z_2 + d}\]
Write the distance of the point P(3, 4, 5) from z-axis.
Write the length of the perpendicular drawn from the point P(3, 5, 12) on x-axis.
The x-coordinate of a point on the line joining the points Q(2, 2, 1) and R(5, 1, –2) is 4. Find its z-coordinate.
A plane meets the co-ordinates axis in A, B, C such that the centroid of the ∆ABC is the point (α, β, γ). Show that the equation of the plane is `x/alpha + y/beta + z/γ` = 3
Find the image of the point having position vector `hati + 3hatj + 4hatk` in the plane `hatr * (2hati - hatj + hatk)` + 3 = 0.
The coordinates of the foot of the perpendicular drawn from the point (2, 5, 7) on the x-axis are given by ______.
If α, β, γ are the angles that a line makes with the positive direction of x, y, z axis, respectively, then the direction cosines of the line are ______.
If a line makes angles α, β, γ with the positive directions of the coordinate axes, then the value of sin2α + sin2β + sin2γ is ______.
If a line makes an angle of `pi/4` with each of y and z axis, then the angle which it makes with x-axis is ______.
Find the equations of the line passing through the point (3,0,1) and parallel to the planes x + 2y = 0 and 3y – z = 0.
Find the equation of the plane which is perpendicular to the plane 5x + 3y + 6z + 8 = 0 and which contains the line of intersection of the planes x + 2y + 3z – 4 = 0 and 2x + y – z + 5 = 0.
Show that the straight lines whose direction cosines are given by 2l + 2m – n = 0 and mn + nl + lm = 0 are at right angles.
If the directions cosines of a line are k, k, k, then ______.
The direction cosines of the vector `(2hati + 2hatj - hatk)` are ______.
The angle between the line `vecr = (5hati - hatj - 4hatk) + lambda(2hati - hatj + hatk)` and the plane `vec.(3hati - 4hatj - hatk)` + 5 = 0 is `sin^-1(5/(2sqrt(91)))`.
The angle between the planes `vecr.(2hati - 3hatj + hatk)` = 1 and `vecr.(hati - hatj)` = 4 is `cos^-1((-5)/sqrt(58))`.