Advertisements
Advertisements
प्रश्न
The direction cosines of the vector `(2hati + 2hatj - hatk)` are ______.
उत्तर
The direction cosines of the vector `(2hati + 2hatj - hatk)` are `2/3, 2/3, (-1)/3`.
Explanation:
Direction cosines of `(2hati + 2hatj - hatk)` are
`2/sqrt(4 + 4 + 1)`, `2/sqrt(4 + 4 + 1)`, `(-1)/sqrt(4 + 4 + 1)`
i.e., `2/3, 2/3, (-1)/3`
APPEARS IN
संबंधित प्रश्न
Name the octants in which the following points lie:
(1, 2, 3), (4, –2, 3), (4, –2, –5), (4, 2, –5), (–4, 2, –5), (–4, 2, 5),
(–3, –1, 6), (2, –4, –7).
Coordinate planes divide the space into ______ octants.
Name the octants in which the following points lie:
(–5, 4, 3)
Name the octants in which the following points lie:
(4, –3, 5)
Find the image of:
(–5, 4, –3) in the xz-plane.
Find the image of:
(–5, 0, 3) in the xz-plane.
Find the points on z-axis which are at a distance \[\sqrt{21}\]from the point (1, 2, 3).
Prove that the triangle formed by joining the three points whose coordinates are (1, 2, 3), (2, 3, 1) and (3, 1, 2) is an equilateral triangle.
Find the locus of the points which are equidistant from the points (1, 2, 3) and (3, 2, –1).
Find the locus of the point, the sum of whose distances from the points A(4, 0, 0) and B(–4, 0, 0) is equal to 10.
Show that the plane ax + by + cz + d = 0 divides the line joining the points (x1, y1, z1) and (x2, y2, z2) in the ratio \[- \frac{a x_1 + b y_1 + c z_1 + d}{a x_2 + b y_2 + c z_2 + d}\]
Write the length of the perpendicular drawn from the point P(3, 5, 12) on x-axis.
Find the point on y-axis which is at a distance of \[\sqrt{10}\] units from the point (1, 2, 3).
Find the point on x-axis which is equidistant from the points A (3, 2, 2) and B (5, 5, 4).
The ratio in which the line joining the points (a, b, c) and (–a, –c, –b) is divided by the xy-plane is
Let (3, 4, –1) and (–1, 2, 3) be the end points of a diameter of a sphere. Then, the radius of the sphere is equal to
The coordinates of the foot of the perpendicular from a point P(6,7, 8) on x - axis are
If a line makes an angle of 30°, 60°, 90° with the positive direction of x, y, z-axes, respectively, then find its direction cosines.
Find the co-ordinates of the foot of perpendicular drawn from the point A(1, 8, 4) to the line joining the points B(0, –1, 3) and C(2, –3, –1).
The coordinates of the foot of the perpendicular drawn from the point (2, 5, 7) on the x-axis are given by ______.
A line makes equal angles with co-ordinate axis. Direction cosines of this line are ______.
If a line makes angles `pi/2, 3/4 pi` and `pi/4` with x, y, z axis, respectively, then its direction cosines are ______.
Prove that the lines x = py + q, z = ry + s and x = p′y + q′, z = r′y + s′ are perpendicular if pp′ + rr′ + 1 = 0.
Find the equations of the line passing through the point (3,0,1) and parallel to the planes x + 2y = 0 and 3y – z = 0.
The vector equation of the line `(x - 5)/3 = (y + 4)/7 = (z - 6)/2` is ______.