मराठी

Let (3, 4, –1) and (–1, 2, 3) Be the End Points of a Diameter of a Sphere. Then, the Radius of the Sphere is Equal to - Mathematics

Advertisements
Advertisements

प्रश्न

Let (3, 4, –1) and (–1, 2, 3) be the end points of a diameter of a sphere. Then, the radius of the sphere is equal to 

पर्याय

  •  2

  • 3

  • 6

  • 7

MCQ

उत्तर

 3
Suppose d is the diameter of the sphere. Then 

\[d^2 = \left( - 1 - 3 \right)^2 + \left( 2 - 4 \right)^2 + \left( 3 + 1 \right)^2 \]
\[ \Rightarrow d^2 = \left( - 4 \right)^2 + \left( - 2 \right)^2 + \left( 4 \right)^2 \]
\[ \Rightarrow d^2 = 16 + 4 + 16\]
\[ \Rightarrow d^2 = 36\]
\[ \Rightarrow d = 6\] 

Hence, radius of the sphere is 3 units.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 28: Introduction to three dimensional coordinate geometry - Exercise 28.5 [पृष्ठ २३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 28 Introduction to three dimensional coordinate geometry
Exercise 28.5 | Q 7 | पृष्ठ २३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the image  of:

 (5, 2, –7) in the xy-plane.


Determine the point on z-axis which is equidistant from the points (1, 5, 7) and (5, 1, –4).


Find the point on y-axis which is equidistant from the points (3, 1, 2) and (5, 5, 2).


Find the points on z-axis which are at a distance \[\sqrt{21}\]from the point (1, 2, 3). 


Prove that the triangle formed by joining the three points whose coordinates are (1, 2, 3), (2, 3, 1) and (3, 1, 2) is an equilateral triangle.


Find the locus of P if PA2 + PB2 = 2k2, where A and B are the points (3, 4, 5) and (–1, 3, –7).


Verify the following: 

(0, 7, 10), (–1, 6, 6) and (–4, 9, –6) are vertices of a right-angled triangle.


Show that the points A(1, 2, 3), B(–1, –2, –1), C(2, 3, 2) and D(4, 7, 6) are the vertices of a parallelogram ABCD, but not a rectangle.


Find the equation of the set of the points P such that its distances from the points A(3, 4, –5) and B(–2, 1, 4) are equal.


Show that the plane ax + by cz + d = 0 divides the line joining the points (x1y1z1) and (x2y2z2) in the ratio \[- \frac{a x_1 + b y_1 + c z_1 + d}{a x_2 + b y_2 + c z_2 + d}\]


Write the distance of the point P(3, 4, 5) from z-axis.


Write the coordinates of the foot of the perpendicular from the point (1, 2, 3) on y-axis.


Find the point on x-axis which is equidistant from the points A (3, 2, 2) and B (5, 5, 4).


The ratio in which the line joining the points (a, b, c) and (–a, –c, –b) is divided by the xy-plane is


XOZ-plane divides the join of (2, 3, 1) and (6, 7, 1) in the ratio


The coordinates of the foot of the perpendicular from a point P(6,7, 8) on x - axis are 


The perpendicular distance of the point P (6, 7, 8) from xy - plane is


The length of the perpendicular drawn from the point P (3, 4, 5) on y-axis is 


Find the direction cosines of the line passing through the points P(2, 3, 5) and Q(–1, 2, 4).


Find the coordinates of the point where the line through (3, – 4, – 5) and (2, –3, 1) crosses the plane passing through three points (2, 2, 1), (3, 0, 1) and (4, –1, 0)


Find the co-ordinates of the foot of perpendicular drawn from the point A(1, 8, 4) to the line joining the points B(0, –1, 3) and C(2, –3, –1).


If the line drawn from the point (–2, – 1, – 3) meets a plane at right angle at the point (1, – 3, 3), find the equation of the plane


Find the equation of the plane through the points (2, 1, 0), (3, –2, –2) and (3, 1, 7).


Find the length and the foot of perpendicular from the point `(1, 3/2, 2)` to the plane 2x – 2y + 4z + 5 = 0.


Find the equations of the line passing through the point (3,0,1) and parallel to the planes x + 2y = 0 and 3y – z = 0.


Find the equation of the plane through the points (2, 1, –1) and (–1, 3, 4), and perpendicular to the plane x – 2y + 4z = 10.


The plane ax + by = 0 is rotated about its line of intersection with the plane z = 0 through an angle α. Prove that the equation of the plane in its new position is ax + by `+- (sqrt(a^2 + b^2) tan alpha)z ` = 0


The sine of the angle between the straight line `(x - 2)/3 = (y - 3)/4 = (z - 4)/5` and the plane 2x – 2y + z = 5 is ______.


The vector equation of the line through the points (3, 4, –7) and (1, –1, 6) is ______.


The cartesian equation of the plane `vecr * (hati + hatj - hatk)` is ______.


The angle between the line `vecr = (5hati - hatj - 4hatk) + lambda(2hati - hatj + hatk)` and the plane `vec.(3hati - 4hatj - hatk)` + 5 = 0 is `sin^-1(5/(2sqrt(91)))`.


The angle between the planes `vecr.(2hati - 3hatj + hatk)` = 1 and `vecr.(hati - hatj)` = 4 is `cos^-1((-5)/sqrt(58))`.


The line `vecr = 2hati - 3hatj - hatk + lambda(hati - hatj + 2hatk)` lies in the plane `vecr.(3hati + hatj - hatk) + 2` = 0.


The vector equation of the line `(x - 5)/3 = (y + 4)/7 = (z - 6)/2` is `vecr = (5hati - 4hatj + 6hatk) + lambda(3hati + 7hatj - 2hatk)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×