Advertisements
Advertisements
प्रश्न
If the line drawn from the point (–2, – 1, – 3) meets a plane at right angle at the point (1, – 3, 3), find the equation of the plane
उत्तर
Since, the line drawn from the point B(–2, –1, –3) meets a plane a plane at right angle at the point 4(1, –3, 3).
So, the plane passes through the point 4(1, –3, 3)
Also normal to plane is `(vecr - veca) * vecn` = 0
Where `veca = hati - 3hatj + 3hatk`
⇒ `[(xhati + yhatj + zhatk) - (hati - 3hatj + 3hatk)] * (-3hati + 2hatj - 6hatk)` = 0
⇒ `[(x - 1)hati + (y + 3)hatj + (z - 3)hatk] * (-3hati + 2hatj - 6hatk)` = 0
⇒ `-3x + 3 + 2y + 6 - 6z + 18` = 0
∴ 3x – 2y + 6z – 27 = 0
APPEARS IN
संबंधित प्रश्न
Name the octants in which the following points lie:
(1, 2, 3), (4, –2, 3), (4, –2, –5), (4, 2, –5), (–4, 2, –5), (–4, 2, 5),
(–3, –1, 6), (2, –4, –7).
Name the octants in which the following points lie: (5, 2, 3)
Name the octants in which the following points lie:
(–5, 4, 3)
Name the octants in which the following points lie:
(4, –3, 5)
Name the octants in which the following points lie:
(–5, –4, 7)
Name the octants in which the following points lie:
(–7, 2 – 5)
Find the image of:
(5, 2, –7) in the xy-plane.
Planes are drawn parallel to the coordinate planes through the points (3, 0, –1) and (–2, 5, 4). Find the lengths of the edges of the parallelepiped so formed.
Planes are drawn through the points (5, 0, 2) and (3, –2, 5) parallel to the coordinate planes. Find the lengths of the edges of the rectangular parallelepiped so formed.
Find the distances of the point P(–4, 3, 5) from the coordinate axes.
Find the points on z-axis which are at a distance \[\sqrt{21}\]from the point (1, 2, 3).
Prove that the point A(1, 3, 0), B(–5, 5, 2), C(–9, –1, 2) and D(–3, –3, 0) taken in order are the vertices of a parallelogram. Also, show that ABCD is not a rectangle.
The coordinates of the mid-points of sides AB, BC and CA of △ABC are D(1, 2, −3), E(3, 0,1) and F(−1, 1, −4) respectively. Write the coordinates of its centroid.
Write the coordinates of the foot of the perpendicular from the point (1, 2, 3) on y-axis.
Write the length of the perpendicular drawn from the point P(3, 5, 12) on x-axis.
The coordinates of the foot of the perpendicular drawn from the point P(3, 4, 5) on the yz- plane are
The coordinates of the foot of the perpendicular from a point P(6,7, 8) on x - axis are
The length of the perpendicular drawn from the point P(a, b, c) from z-axis is
Find the coordinates of the point where the line through (3, – 4, – 5) and (2, –3, 1) crosses the plane passing through three points (2, 2, 1), (3, 0, 1) and (4, –1, 0)
A plane meets the co-ordinates axis in A, B, C such that the centroid of the ∆ABC is the point (α, β, γ). Show that the equation of the plane is `x/alpha + y/beta + z/γ` = 3
The coordinates of the foot of the perpendicular drawn from the point (2, 5, 7) on the x-axis are given by ______.
If α, β, γ are the angles that a line makes with the positive direction of x, y, z axis, respectively, then the direction cosines of the line are ______.
Find the equation of a plane which bisects perpendicularly the line joining the points A(2, 3, 4) and B(4, 5, 8) at right angles.
If a variable line in two adjacent positions has direction cosines l, m, n and l + δl, m + δm, n + δn, show that the small angle δθ between the two positions is given by δθ2 = δl2 + δm2 + δn2
Find the equations of the line passing through the point (3,0,1) and parallel to the planes x + 2y = 0 and 3y – z = 0.