मराठी

Name the Octants in Which the Following Points Lie: (–5, –4, 7) - Mathematics

Advertisements
Advertisements

प्रश्न

Name the octants in which the following points lie: 

(–5, –4, 7) 

उत्तर

The x-coordinate, the y-coordinate and the z-coordinate of the point (−5, −4, 7) are negative, negative and positive, respectively.

 Therefore, this point lies in X'OY'Z octant .

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 28: Introduction to three dimensional coordinate geometry - Exercise 15.1 [पृष्ठ ६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 28 Introduction to three dimensional coordinate geometry
Exercise 15.1 | Q 1.5 | पृष्ठ ६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Coordinate planes divide the space into ______ octants.


Name the octants in which the following points lie:

(–5, 4, 3) 


Name the octants in which the following points lie: 

(–5, –3, –2) 


Name the octants in which the following points lie:

 (2, –5, –7) 


Find the image  of: 

 (–2, 3, 4) in the yz-plane.


Find the image  of: 

 (–5, 4, –3) in the xz-plane. 


Planes are drawn parallel to the coordinate planes through the points (3, 0, –1) and (–2, 5, 4). Find the lengths of the edges of the parallelepiped so formed.


Find the distances of the point P(–4, 3, 5) from the coordinate axes. 


Find the point on y-axis which is equidistant from the points (3, 1, 2) and (5, 5, 2).


Find the points on z-axis which are at a distance \[\sqrt{21}\]from the point (1, 2, 3). 


Prove that the triangle formed by joining the three points whose coordinates are (1, 2, 3), (2, 3, 1) and (3, 1, 2) is an equilateral triangle.


If A(–2, 2, 3) and B(13, –3, 13) are two points.
Find the locus of a point P which moves in such a way the 3PA = 2PB.


Verify the following: 

(0, 7, 10), (–1, 6, 6) and (–4, 9, –6) are vertices of a right-angled triangle.


Verify the following:

 (5, –1, 1), (7, –4,7), (1, –6,10) and (–1, – 3,4) are the vertices of a rhombus.


Find the equation of the set of the points P such that its distances from the points A(3, 4, –5) and B(–2, 1, 4) are equal.


Find the ratio in which the sphere x2 + y2 z2 = 504 divides the line joining the points (12, –4, 8) and (27, –9, 18).


Show that the plane ax + by cz + d = 0 divides the line joining the points (x1y1z1) and (x2y2z2) in the ratio \[- \frac{a x_1 + b y_1 + c z_1 + d}{a x_2 + b y_2 + c z_2 + d}\]


The coordinates of the mid-points of sides AB, BC and CA of  △ABC are D(1, 2, −3), E(3, 0,1) and F(−1, 1, −4) respectively. Write the coordinates of its centroid.


Let (3, 4, –1) and (–1, 2, 3) be the end points of a diameter of a sphere. Then, the radius of the sphere is equal to 


The coordinates of the foot of the perpendicular drawn from the point P(3, 4, 5) on the yz- plane are


The coordinates of the foot of the perpendicular from a point P(6,7, 8) on x - axis are 


The length of the perpendicular drawn from the point P (3, 4, 5) on y-axis is 


A plane meets the co-ordinates axis in A, B, C such that the centroid of the ∆ABC is the point (α, β, γ). Show that the equation of the plane is `x/alpha + y/beta + z/γ` = 3


The coordinates of the foot of the perpendicular drawn from the point (2, 5, 7) on the x-axis are given by ______.


If a line makes an angle of `pi/4` with each of y and z axis, then the angle which it makes with x-axis is ______.


If the line drawn from the point (–2, – 1, – 3) meets a plane at right angle at the point (1, – 3, 3), find the equation of the plane


Find the angle between the lines whose direction cosines are given by the equations l + m + n = 0, l2 + m2 – n2 = 0


If a variable line in two adjacent positions has direction cosines l, m, n and l + δl, m + δm, n + δn, show that the small angle δθ between the two positions is given by δθ2 = δl2 + δm2 + δn2


Two systems of rectangular axis have the same origin. If a plane cuts them at distances a, b, c and a′, b′, c′, respectively, from the origin, prove that

`1/a^2 + 1/b^2 + 1/c^2 = 1/(a"'"^2) + 1/(b"'"^2) + 1/(c"'"^2)`


Find the foot of perpendicular from the point (2,3,–8) to the line `(4 - x)/2 = y/6 = (1 - z)/3`. Also, find the perpendicular distance from the given point to the line.


Find the length and the foot of perpendicular from the point `(1, 3/2, 2)` to the plane 2x – 2y + 4z + 5 = 0.


Show that the straight lines whose direction cosines are given by 2l + 2m – n = 0 and mn + nl + lm = 0 are at right angles.


The plane 2x – 3y + 6z – 11 = 0 makes an angle sin–1(α) with x-axis. The value of α is equal to ______.


The vector equation of the line through the points (3, 4, –7) and (1, –1, 6) is ______.


The cartesian equation of the plane `vecr * (hati + hatj - hatk)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×