मराठी

Name the Octants in Which the Following Points Lie: (2, –5, –7) - Mathematics

Advertisements
Advertisements

प्रश्न

Name the octants in which the following points lie:

 (2, –5, –7) 

उत्तर

 The x-coordinate, the y-coordinate and the z-coordinate of the point (2, −5, −7) are positive, negative and negative, respectively.
 Therefore, this point lies in XOY'Z' octant.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 28: Introduction to three dimensional coordinate geometry - Exercise 15.1 [पृष्ठ ६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 28 Introduction to three dimensional coordinate geometry
Exercise 15.1 | Q 1.7 | पृष्ठ ६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

The x-axis and y-axis taken together determine a plane known as_______.


Name the octants in which the following points lie:

(–5, 4, 3) 


Name the octants in which the following points lie: 

 (7, 4, –3)


Find the image  of: 

 (–2, 3, 4) in the yz-plane.


Find the image  of:

 (5, 2, –7) in the xy-plane.


Find the image  of: 

 (–5, 0, 3) in the xz-plane. 


Planes are drawn through the points (5, 0, 2) and (3, –2, 5) parallel to the coordinate planes. Find the lengths of the edges of the rectangular parallelepiped so formed. 


Find the distances of the point P(–4, 3, 5) from the coordinate axes. 


Find the coordinates of the point which is equidistant  from the four points O(0, 0, 0), A(2, 0, 0), B(0, 3, 0) and C(0, 0, 8).


Show that the points (a, b, c), (b, c, a) and (c, a, b) are the vertices of an equilateral triangle. 


Are the points A(3, 6, 9), B(10, 20, 30) and C(25, –41, 5), the vertices of a right-angled triangle?


Verify the following: 

 (–1, 2, 1), (1, –2, 5), (4, –7, 8) and (2, –3, 4) are vertices of a parallelogram.


Find the locus of the points which are equidistant from the points (1, 2, 3) and (3, 2, –1).


Find the locus of the point, the sum of whose distances from the points A(4, 0, 0) and B(–4, 0, 0) is equal to 10.


Show that the points A(1, 2, 3), B(–1, –2, –1), C(2, 3, 2) and D(4, 7, 6) are the vertices of a parallelogram ABCD, but not a rectangle.


Find the ratio in which the sphere x2 + y2 z2 = 504 divides the line joining the points (12, –4, 8) and (27, –9, 18).


Write the coordinates of the foot of the perpendicular from the point (1, 2, 3) on y-axis.


What is the locus of a point for which y = 0, z = 0?


Find the ratio in which the line segment joining the points (2, 4,5) and (3, −5, 4) is divided by the yz-plane.


The ratio in which the line joining the points (a, b, c) and (–a, –c, –b) is divided by the xy-plane is


The x-coordinate of a point on the line joining the points Q(2, 2, 1) and R(5, 1, –2) is 4. Find its z-coordinate.


A plane meets the co-ordinates axis in A, B, C such that the centroid of the ∆ABC is the point (α, β, γ). Show that the equation of the plane is `x/alpha + y/beta + z/γ` = 3


If α, β, γ are the angles that a line makes with the positive direction of x, y, z axis, respectively, then the direction cosines of the line are ______.


Find the angle between the lines whose direction cosines are given by the equations l + m + n = 0, l2 + m2 – n2 = 0


If a variable line in two adjacent positions has direction cosines l, m, n and l + δl, m + δm, n + δn, show that the small angle δθ between the two positions is given by δθ2 = δl2 + δm2 + δn2


O is the origin and A is (a, b, c). Find the direction cosines of the line OA and the equation of plane through A at right angle to OA.


Two systems of rectangular axis have the same origin. If a plane cuts them at distances a, b, c and a′, b′, c′, respectively, from the origin, prove that

`1/a^2 + 1/b^2 + 1/c^2 = 1/(a"'"^2) + 1/(b"'"^2) + 1/(c"'"^2)`


Find the equation of the plane through the points (2, 1, –1) and (–1, 3, 4), and perpendicular to the plane x – 2y + 4z = 10.


If the directions cosines of a line are k, k, k, then ______.


The direction cosines of the vector `(2hati + 2hatj - hatk)` are ______.


The cartesian equation of the plane `vecr * (hati + hatj - hatk)` is ______.


If the foot of perpendicular drawn from the origin to a plane is (5, – 3, – 2), then the equation of plane is `vecr.(5hati - 3hatj - 2hatk)` = 38.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×