मराठी

O is the origin and A is (a, b, c). Find the direction cosines of the line OA and the equation of plane through A at right angle to OA. - Mathematics

Advertisements
Advertisements

प्रश्न

O is the origin and A is (a, b, c). Find the direction cosines of the line OA and the equation of plane through A at right angle to OA.

बेरीज

उत्तर

Given, O(0, 0, 0) and A(a, b, c)

So, the direction ratios of OA = a – 0, b – 0, c – 0 = a, b, c

And, the direction cosines of line OA

`(a/(sqrt(a^2 + b^2 + c^2)), b/sqrt(a^2 + b^2 + c^2), c/sqrt(a^2 + b^2 + c^2))`

Now, the direction ratios of the normal to the plane are (a, b, c).

We know that, the equation of the plan passing through the point A(a, b, c) is

a(x – a) + b(y – b) + c(z – c) = 0

ax – a2 + by – b2 + cz – c2 = 0

ax + by + cz = a2 + b2 + c2

Thus, the required equation of the plane is ax + by + cz = a2 + b2 + c2 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 12: Introduction to Three Dimensional Geometry - Exercise [पृष्ठ २३६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 12 Introduction to Three Dimensional Geometry
Exercise | Q 14 | पृष्ठ २३६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

The x-axis and y-axis taken together determine a plane known as_______.


Name the octants in which the following points lie: 

(–5, –4, 7) 


Name the octants in which the following points lie:

 (2, –5, –7) 


Name the octants in which the following points lie: 

(–7, 2 – 5)


Find the image  of:

 (5, 2, –7) in the xy-plane.


Show that the points A(3, 3, 3), B(0, 6, 3), C(1, 7, 7) and D(4, 4, 7) are the vertices of a square.


Prove that the point A(1, 3, 0), B(–5, 5, 2), C(–9, –1, 2) and D(–3, –3, 0) taken in order are the vertices of a parallelogram. Also, show that ABCD is not a rectangle.


If A(–2, 2, 3) and B(13, –3, 13) are two points.
Find the locus of a point P which moves in such a way the 3PA = 2PB.


Show that the points (a, b, c), (b, c, a) and (c, a, b) are the vertices of an equilateral triangle. 


Verify the following:

 (5, –1, 1), (7, –4,7), (1, –6,10) and (–1, – 3,4) are the vertices of a rhombus.


Find the locus of the points which are equidistant from the points (1, 2, 3) and (3, 2, –1).


Show that the points A(1, 2, 3), B(–1, –2, –1), C(2, 3, 2) and D(4, 7, 6) are the vertices of a parallelogram ABCD, but not a rectangle.


Show that the plane ax + by cz + d = 0 divides the line joining the points (x1y1z1) and (x2y2z2) in the ratio \[- \frac{a x_1 + b y_1 + c z_1 + d}{a x_2 + b y_2 + c z_2 + d}\]


Write the distance of the point P(3, 4, 5) from z-axis.


The coordinates of the mid-points of sides AB, BC and CA of  △ABC are D(1, 2, −3), E(3, 0,1) and F(−1, 1, −4) respectively. Write the coordinates of its centroid.


Write the coordinates of the foot of the perpendicular from the point (1, 2, 3) on y-axis.


Find the ratio in which the line segment joining the points (2, 4,5) and (3, −5, 4) is divided by the yz-plane.


Let (3, 4, –1) and (–1, 2, 3) be the end points of a diameter of a sphere. Then, the radius of the sphere is equal to 


The length of the perpendicular drawn from the point P (3, 4, 5) on y-axis is 


Find the direction cosines of the line passing through the points P(2, 3, 5) and Q(–1, 2, 4).


If a line makes angles `pi/2, 3/4 pi` and `pi/4` with x, y, z axis, respectively, then its direction cosines are ______.


If a line makes angles α, β, γ with the positive directions of the coordinate axes, then the value of sin2α + sin2β + sin2γ is ______.


Find the angle between the lines whose direction cosines are given by the equations l + m + n = 0, l2 + m2 – n2 = 0


If a variable line in two adjacent positions has direction cosines l, m, n and l + δl, m + δm, n + δn, show that the small angle δθ between the two positions is given by δθ2 = δl2 + δm2 + δn2


Two systems of rectangular axis have the same origin. If a plane cuts them at distances a, b, c and a′, b′, c′, respectively, from the origin, prove that

`1/a^2 + 1/b^2 + 1/c^2 = 1/(a"'"^2) + 1/(b"'"^2) + 1/(c"'"^2)`


Find the foot of perpendicular from the point (2,3,–8) to the line `(4 - x)/2 = y/6 = (1 - z)/3`. Also, find the perpendicular distance from the given point to the line.


Show that the straight lines whose direction cosines are given by 2l + 2m – n = 0 and mn + nl + lm = 0 are at right angles.


The direction cosines of the vector `(2hati + 2hatj - hatk)` are ______.


The unit vector normal to the plane x + 2y +3z – 6 = 0 is `1/sqrt(14)hati + 2/sqrt(14)hatj + 3/sqrt(14)hatk`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×