Advertisements
Advertisements
प्रश्न
Find the foot of perpendicular from the point (2,3,–8) to the line `(4 - x)/2 = y/6 = (1 - z)/3`. Also, find the perpendicular distance from the given point to the line.
उत्तर
Let the given equation be `(4 - x)/2 = y/6 = (1 - z)/3 = lambda`
This can be written as `(x - 4)/(-2) = y/6 = (z - 1)/(-3) = lambda` .......(1)
∴ The coordinates of any point on the line is x = 4 − 2λ, y = 6λ, z = 1 − 3λ
Let Q(4 − 2λ, 6λ, 1 − 3λ) be the foot of perpendicular from the point P(2, 3, −8) on line ......(1)
We know the direction ratios of any line segement PQ is given by (x2 − x1, y2 − y1, z2 − z1)
The direction cosines of PQ is given by
= (−2λ + 4 − 2, 6λ − 3, −3λ + 1 + 8)
= (−2λ + 2, 6λ − 3, −3λ + 9)
Now Q is the foot of the perpendicular of the line (1)
`vec(PQ)` is the perpendicular to the line (1)
Hence the sum of the product of this direction ratios is 0
= (−2λ + 2)(−2) + (6λ − 3) . 6 + (−3λ + 9)(−3) = 0
⇒ 4λ − 4 + 36λ − 18 + 9λ − 27 = 0
APPEARS IN
संबंधित प्रश्न
Three vertices of a parallelogram ABCD are A (3, –1, 2), B (1, 2, –4) and C (–1, 1, 2). Find the coordinates of the fourth vertex.
Find the image of:
(–5, 4, –3) in the xz-plane.
Planes are drawn parallel to the coordinate planes through the points (3, 0, –1) and (–2, 5, 4). Find the lengths of the edges of the parallelepiped so formed.
Find the distances of the point P(–4, 3, 5) from the coordinate axes.
If A(–2, 2, 3) and B(13, –3, 13) are two points.
Find the locus of a point P which moves in such a way the 3PA = 2PB.
Verify the following:
(–1, 2, 1), (1, –2, 5), (4, –7, 8) and (2, –3, 4) are vertices of a parallelogram.
Verify the following:
(5, –1, 1), (7, –4,7), (1, –6,10) and (–1, – 3,4) are the vertices of a rhombus.
Find the locus of the point, the sum of whose distances from the points A(4, 0, 0) and B(–4, 0, 0) is equal to 10.
Find the ratio in which the sphere x2 + y2 + z2 = 504 divides the line joining the points (12, –4, 8) and (27, –9, 18).
Write the length of the perpendicular drawn from the point P(3, 5, 12) on x-axis.
The ratio in which the line joining the points (a, b, c) and (–a, –c, –b) is divided by the xy-plane is
If a line makes an angle of 30°, 60°, 90° with the positive direction of x, y, z-axes, respectively, then find its direction cosines.
A line makes equal angles with co-ordinate axis. Direction cosines of this line are ______.
If a line makes an angle of `pi/4` with each of y and z axis, then the angle which it makes with x-axis is ______.
O is the origin and A is (a, b, c). Find the direction cosines of the line OA and the equation of plane through A at right angle to OA.
Find the length and the foot of perpendicular from the point `(1, 3/2, 2)` to the plane 2x – 2y + 4z + 5 = 0.
Find the equation of the plane through the points (2, 1, –1) and (–1, 3, 4), and perpendicular to the plane x – 2y + 4z = 10.
Show that the points `(hati - hatj + 3hatk)` and `3(hati + hatj + hatk)` are equidistant from the plane `vecr * (5hati + 2hatj - 7hatk) + 9` = 0 and lies on opposite side of it.
Show that the straight lines whose direction cosines are given by 2l + 2m – n = 0 and mn + nl + lm = 0 are at right angles.
If l1, m1, n1 ; l2, m2, n2 ; l3, m3, n3 are the direction cosines of three mutually perpendicular lines, prove that the line whose direction cosines are proportional to l1 + l2 + l3, m1 + m2 + m3, n1 + n2 + n3 makes equal angles with them.
The sine of the angle between the straight line `(x - 2)/3 = (y - 3)/4 = (z - 4)/5` and the plane 2x – 2y + z = 5 is ______.
The vector equation of the line `(x - 5)/3 = (y + 4)/7 = (z - 6)/2` is ______.
The vector equation of the line through the points (3, 4, –7) and (1, –1, 6) is ______.
The cartesian equation of the plane `vecr * (hati + hatj - hatk)` is ______.
The angle between the planes `vecr.(2hati - 3hatj + hatk)` = 1 and `vecr.(hati - hatj)` = 4 is `cos^-1((-5)/sqrt(58))`.
The vector equation of the line `(x - 5)/3 = (y + 4)/7 = (z - 6)/2` is `vecr = (5hati - 4hatj + 6hatk) + lambda(3hati + 7hatj - 2hatk)`.
If the foot of perpendicular drawn from the origin to a plane is (5, – 3, – 2), then the equation of plane is `vecr.(5hati - 3hatj - 2hatk)` = 38.