Advertisements
Advertisements
प्रश्न
If A(–2, 2, 3) and B(13, –3, 13) are two points.
Find the locus of a point P which moves in such a way the 3PA = 2PB.
उत्तर
Let coordinates of point P be (x, y, z).
Given:
3PA = 2PB
\[\Rightarrow 3\left( \sqrt{\left( x + 2 \right)^2 + \left( y - 2 \right)^2 + \left( z - 3 \right)^2} \right) = 2\left( \sqrt{\left( x - 13 \right)^2 + \left( y + 3 \right)^2 + \left( z - 13 \right)^2} \right)\]
\[ \Rightarrow 3\left( \sqrt{x^2 + 4x + 4 + y^2 - 4y + 4 + z^2 - 6z + 9} \right) = 2\left( \sqrt{x^2 - 26x + 169 + y^2 + 6y + 9 + z^2 - 26z + 169} \right)\]
\[\text{ Squaring both sides }, \]
\[ \Rightarrow 9\left( x^2 + y^2 + z^2 + 4x - 4y - 6z + 17 \right) = 4\left( x^2 + y^2 + z^2 - 26x + 6y - 26z + 347 \right)\]
\[ \Rightarrow 9 x^2 + 9 y^2 + 9 z^2 + 36x - 36y - 54z + 153 = 4 x^2 + 4 y^2 + 4 z^2 - 104x + 24y - 104z + 1388\]
\[ \Rightarrow 5 x^2 + 5 y^2 + 5 z^2 + 140x - 60y + 50z - 1235 = 0\]
\[ \Rightarrow 5\left( x^2 + y^2 + z^2 \right) + 140x - 60y + 50z - 1235 = 0\]
\[ \therefore 5\left( x^2 + y^2 + z^2 \right) + 140x - 60y + 50z - 1235 = 0 \text{ is the locus of the point P } .\]
APPEARS IN
संबंधित प्रश्न
Three vertices of a parallelogram ABCD are A (3, –1, 2), B (1, 2, –4) and C (–1, 1, 2). Find the coordinates of the fourth vertex.
Name the octants in which the following points lie:
(4, –3, 5)
Name the octants in which the following points lie:
(–5, –3, –2)
Name the octants in which the following points lie:
(2, –5, –7)
Find the image of:
(–2, 3, 4) in the yz-plane.
Find the image of:
(–5, 4, –3) in the xz-plane.
Find the image of:
(5, 2, –7) in the xy-plane.
Find the image of:
(–5, 0, 3) in the xz-plane.
Find the point on y-axis which is equidistant from the points (3, 1, 2) and (5, 5, 2).
Show that the points (a, b, c), (b, c, a) and (c, a, b) are the vertices of an equilateral triangle.
Verify the following:
(0, 7, –10), (1, 6, –6) and (4, 9, –6) are vertices of an isosceles triangle.
Verify the following:
(0, 7, 10), (–1, 6, 6) and (–4, 9, –6) are vertices of a right-angled triangle.
Verify the following:
(–1, 2, 1), (1, –2, 5), (4, –7, 8) and (2, –3, 4) are vertices of a parallelogram.
Find the equation of the set of the points P such that its distances from the points A(3, 4, –5) and B(–2, 1, 4) are equal.
Find the ratio in which the sphere x2 + y2 + z2 = 504 divides the line joining the points (12, –4, 8) and (27, –9, 18).
The coordinates of the mid-points of sides AB, BC and CA of △ABC are D(1, 2, −3), E(3, 0,1) and F(−1, 1, −4) respectively. Write the coordinates of its centroid.
Write the coordinates of the foot of the perpendicular from the point (1, 2, 3) on y-axis.
Write the length of the perpendicular drawn from the point P(3, 5, 12) on x-axis.
The ratio in which the line joining the points (a, b, c) and (–a, –c, –b) is divided by the xy-plane is
Let (3, 4, –1) and (–1, 2, 3) be the end points of a diameter of a sphere. Then, the radius of the sphere is equal to
XOZ-plane divides the join of (2, 3, 1) and (6, 7, 1) in the ratio
What is the locus of a point for which y = 0, z = 0?
The perpendicular distance of the point P (6, 7, 8) from xy - plane is
If the direction ratios of a line are 1, 1, 2, find the direction cosines of the line.
A plane meets the co-ordinates axis in A, B, C such that the centroid of the ∆ABC is the point (α, β, γ). Show that the equation of the plane is `x/alpha + y/beta + z/γ` = 3
A line makes equal angles with co-ordinate axis. Direction cosines of this line are ______.
Two systems of rectangular axis have the same origin. If a plane cuts them at distances a, b, c and a′, b′, c′, respectively, from the origin, prove that
`1/a^2 + 1/b^2 + 1/c^2 = 1/(a"'"^2) + 1/(b"'"^2) + 1/(c"'"^2)`
Find the length and the foot of perpendicular from the point `(1, 3/2, 2)` to the plane 2x – 2y + 4z + 5 = 0.
Find the equation of the plane through the points (2, 1, –1) and (–1, 3, 4), and perpendicular to the plane x – 2y + 4z = 10.
The plane ax + by = 0 is rotated about its line of intersection with the plane z = 0 through an angle α. Prove that the equation of the plane in its new position is ax + by `+- (sqrt(a^2 + b^2) tan alpha)z ` = 0
The area of the quadrilateral ABCD, where A(0, 4, 1), B(2, 3, –1), C(4, 5, 0) and D(2, 6, 2), is equal to ______.
The vector equation of the line through the points (3, 4, –7) and (1, –1, 6) is ______.
The unit vector normal to the plane x + 2y +3z – 6 = 0 is `1/sqrt(14)hati + 2/sqrt(14)hatj + 3/sqrt(14)hatk`.
The intercepts made by the plane 2x – 3y + 5z +4 = 0 on the co-ordinate axis are `-2, 4/3, - 4/5`.
The angle between the line `vecr = (5hati - hatj - 4hatk) + lambda(2hati - hatj + hatk)` and the plane `vec.(3hati - 4hatj - hatk)` + 5 = 0 is `sin^-1(5/(2sqrt(91)))`.