मराठी

Verify the Following: (0, 7, 10), (–1, 6, 6) and (–4, 9, –6) Are Vertices of a Right-angled Triangle. - Mathematics

Advertisements
Advertisements

प्रश्न

Verify the following: 

(0, 7, 10), (–1, 6, 6) and (–4, 9, –6) are vertices of a right-angled triangle.

उत्तर

Let A(0,7,10) , B( \[-\]1,6,6) and C( \[-\]4,9,6) be the vertices of \[\bigtriangleup ABC\]Then ,

AB = \[\sqrt{\left( - 1 - 0 \right)^2 + \left( 6 - 7 \right)^2 + \left( 6 - 10 \right)^2}\]

\[= \sqrt{\left( - 1 \right)^2 + \left( - 1 \right)^2 + \left( - 4 \right)^2}\]
\[ = \sqrt{1 + 1 + 16}\]
\[ = \sqrt{18}\]
\[ = 3\sqrt{2}\]

BC = \[\sqrt{\left( - 4 + 1 \right)^2 + \left( 9 - 6 \right)^2 + \left( 6 - 6 \right)^2}\]

\[= \sqrt{\left( - 3 \right)^2 + \left( 3 \right)^2 + 0}\]
\[ = \sqrt{9 + 9}\]
\[ = \sqrt{18}\]
\[ = 3\sqrt{2}\]


AC = \[\sqrt{\left( - 4 - 0 \right)^2 + \left( 9 - 7 \right)^2 + \left( 6 - 10 \right)^2}\]

\[= \sqrt{\left( - 4 \right)^2 + \left( 2 \right)^2 + \left( - 4 \right)^2}\]
\[ = \sqrt{16 + 4 + 16}\]
\[ = \sqrt{36}\]
\[ = 6\]

\[A C^2\]\[= A B^2 + B C^2\]

Thus, the given points are the vertices of a right-angled triangle.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 28: Introduction to three dimensional coordinate geometry - Exercise 28.2 [पृष्ठ १०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 28 Introduction to three dimensional coordinate geometry
Exercise 28.2 | Q 20.2 | पृष्ठ १०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Name the octants in which the following points lie:

(1, 2, 3), (4, –2, 3), (4, –2, –5), (4, 2, –5), (–4, 2, –5), (–4, 2, 5),

(–3, –1, 6), (2, –4, –7).


Three vertices of a parallelogram ABCD are A (3, –1, 2), B (1, 2, –4) and C (–1, 1, 2). Find the coordinates of the fourth vertex.


Name the octants in which the following points lie: (5, 2, 3)


Name the octants in which the following points lie: 

(4, –3, 5)


Find the image  of: 

 (–2, 3, 4) in the yz-plane.


Find the image  of: 

 (–5, 0, 3) in the xz-plane. 


Determine the points in zx-plane are equidistant from the points A(1, –1, 0), B(2, 1, 2) and C(3, 2, –1). 


Find the points on z-axis which are at a distance \[\sqrt{21}\]from the point (1, 2, 3). 


Prove that the triangle formed by joining the three points whose coordinates are (1, 2, 3), (2, 3, 1) and (3, 1, 2) is an equilateral triangle.


Prove that the point A(1, 3, 0), B(–5, 5, 2), C(–9, –1, 2) and D(–3, –3, 0) taken in order are the vertices of a parallelogram. Also, show that ABCD is not a rectangle.


Are the points A(3, 6, 9), B(10, 20, 30) and C(25, –41, 5), the vertices of a right-angled triangle?


Find the equation of the set of the points P such that its distances from the points A(3, 4, –5) and B(–2, 1, 4) are equal.


Find the ratio in which the sphere x2 + y2 z2 = 504 divides the line joining the points (12, –4, 8) and (27, –9, 18).


Write the distance of the point P(3, 4, 5) from z-axis.


Write the length of the perpendicular drawn from the point P(3, 5, 12) on x-axis.


The ratio in which the line joining (2, 4, 5) and (3, 5, –9) is divided by the yz-plane is


The coordinates of the foot of the perpendicular drawn from the point P(3, 4, 5) on the yz- plane are


The perpendicular distance of the point P (6, 7, 8) from xy - plane is


If a line makes an angle of 30°, 60°, 90° with the positive direction of x, y, z-axes, respectively, then find its direction cosines.


The x-coordinate of a point on the line joining the points Q(2, 2, 1) and R(5, 1, –2) is 4. Find its z-coordinate.


Find the coordinates of the point where the line through (3, – 4, – 5) and (2, –3, 1) crosses the plane passing through three points (2, 2, 1), (3, 0, 1) and (4, –1, 0)


Find the co-ordinates of the foot of perpendicular drawn from the point A(1, 8, 4) to the line joining the points B(0, –1, 3) and C(2, –3, –1).


If a line makes angles α, β, γ with the positive directions of the coordinate axes, then the value of sin2α + sin2β + sin2γ is ______.


Prove that the lines x = py + q, z = ry + s and x = p′y + q′, z = r′y + s′ are perpendicular if pp′ + rr′ + 1 = 0.


If the line drawn from the point (–2, – 1, – 3) meets a plane at right angle at the point (1, – 3, 3), find the equation of the plane


Find the equation of the plane through the points (2, 1, 0), (3, –2, –2) and (3, 1, 7).


Find the equations of the two lines through the origin which intersect the line `(x - 3)/2 = (y - 3)/1 = z/1` at angles of `pi/3` each.


O is the origin and A is (a, b, c). Find the direction cosines of the line OA and the equation of plane through A at right angle to OA.


Find the length and the foot of perpendicular from the point `(1, 3/2, 2)` to the plane 2x – 2y + 4z + 5 = 0.


The sine of the angle between the straight line `(x - 2)/3 = (y - 3)/4 = (z - 4)/5` and the plane 2x – 2y + z = 5 is ______.


The locus represented by xy + yz = 0 is ______.


The vector equation of the line through the points (3, 4, –7) and (1, –1, 6) is ______.


The intercepts made by the plane 2x – 3y + 5z +4 = 0 on the co-ordinate axis are `-2, 4/3, - 4/5`.


The angle between the line `vecr = (5hati - hatj - 4hatk) + lambda(2hati - hatj + hatk)` and the plane `vec.(3hati - 4hatj - hatk)` + 5 = 0 is `sin^-1(5/(2sqrt(91)))`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×