मराठी

Verify the Following: (0, 7, –10), (1, 6, –6) and (4, 9, –6) Are Vertices of an Isosceles Triangle. - Mathematics

Advertisements
Advertisements

प्रश्न

Verify the following: 

 (0, 7, –10), (1, 6, –6) and (4, 9, –6) are vertices of an isosceles triangle. 

उत्तर

Let A(0, 7, \[-\]10) , B(1, 6, \[-\]6) , C(4, 9, \[-\]be the vertices of \[\bigtriangleup ABC\] AB = \[\sqrt{\left( 1 - 0 \right)^2 + \left( 6 - 7 \right)^2 + \left( - 6 + 10 \right)^2}\]

\[= \sqrt{1^2 + \left( - 1 \right)^2 + 4^2}\]
\[ = \sqrt{1 + 1 + 16}\]
\[ = \sqrt{18}\]
\[ = 3\sqrt{2}\]

BC = \[\sqrt{\left( 4 - 1 \right)^2 + \left( 9 - 6 \right)^2 + \left( - 6 + 6 \right)^2}\]

\[= \sqrt{3^2 + 3^2 + 0}\]
\[ = \sqrt{9 + 9}\]
\[ = \sqrt{18}\]
\[ = 3\sqrt{2}\]

CA= \[\sqrt{\left( 0 - 4 \right)^2 + \left( 7 - 9 \right)^2 + \left( - 10 + 6 \right)^2}\]

\[= \sqrt{16 + 4 + 16}\]
\[ = \sqrt{36}\]
\[ = 6\]

Clearly, AB BC
Thus, the given points are the vertices of an isosceles triangle.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 28: Introduction to three dimensional coordinate geometry - Exercise 28.2 [पृष्ठ १०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 28 Introduction to three dimensional coordinate geometry
Exercise 28.2 | Q 20.1 | पृष्ठ १०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Coordinate planes divide the space into ______ octants.


Name the octants in which the following points lie:

(–5, 4, 3) 


Find the image  of: 

 (–5, 4, –3) in the xz-plane. 


Find the image  of: 

 (–5, 0, 3) in the xz-plane. 


A cube of side 5 has one vertex at the point (1, 0, –1), and the three edges from this vertex are, respectively, parallel to the negative x and y axes and positive z-axis. Find the coordinates of the other vertices of the cube.


Planes are drawn parallel to the coordinate planes through the points (3, 0, –1) and (–2, 5, 4). Find the lengths of the edges of the parallelepiped so formed.


Planes are drawn through the points (5, 0, 2) and (3, –2, 5) parallel to the coordinate planes. Find the lengths of the edges of the rectangular parallelepiped so formed. 


Find the distances of the point P(–4, 3, 5) from the coordinate axes. 


Determine the points in zx-plane are equidistant from the points A(1, –1, 0), B(2, 1, 2) and C(3, 2, –1). 


Find the coordinates of the point which is equidistant  from the four points O(0, 0, 0), A(2, 0, 0), B(0, 3, 0) and C(0, 0, 8).


Are the points A(3, 6, 9), B(10, 20, 30) and C(25, –41, 5), the vertices of a right-angled triangle?


Verify the following:

 (5, –1, 1), (7, –4,7), (1, –6,10) and (–1, – 3,4) are the vertices of a rhombus.


Find the ratio in which the sphere x2 + y2 z2 = 504 divides the line joining the points (12, –4, 8) and (27, –9, 18).


Write the distance of the point P (2, 3,5) from the xy-plane.


Write the distance of the point P(3, 4, 5) from z-axis.


The coordinates of the mid-points of sides AB, BC and CA of  △ABC are D(1, 2, −3), E(3, 0,1) and F(−1, 1, −4) respectively. Write the coordinates of its centroid.


Write the coordinates of the foot of the perpendicular from the point (1, 2, 3) on y-axis.


What is the locus of a point for which y = 0, z = 0?


The ratio in which the line joining the points (a, b, c) and (–a, –c, –b) is divided by the xy-plane is


The perpendicular distance of the point P (6, 7, 8) from xy - plane is


If α, β, γ are the angles that a line makes with the positive direction of x, y, z axis, respectively, then the direction cosines of the line are ______.


A line makes equal angles with co-ordinate axis. Direction cosines of this line are ______.


If a line makes angles α, β, γ with the positive directions of the coordinate axes, then the value of sin2α + sin2β + sin2γ is ______.


Prove that the lines x = py + q, z = ry + s and x = p′y + q′, z = r′y + s′ are perpendicular if pp′ + rr′ + 1 = 0.


Find the angle between the lines whose direction cosines are given by the equations l + m + n = 0, l2 + m2 – n2 = 0


O is the origin and A is (a, b, c). Find the direction cosines of the line OA and the equation of plane through A at right angle to OA.


Find the foot of perpendicular from the point (2,3,–8) to the line `(4 - x)/2 = y/6 = (1 - z)/3`. Also, find the perpendicular distance from the given point to the line.


Find the length and the foot of perpendicular from the point `(1, 3/2, 2)` to the plane 2x – 2y + 4z + 5 = 0.


Find the equation of the plane which is perpendicular to the plane 5x + 3y + 6z + 8 = 0 and which contains the line of intersection of the planes x + 2y + 3z – 4 = 0 and 2x + y – z + 5 = 0.


Show that the straight lines whose direction cosines are given by 2l + 2m – n = 0 and mn + nl + lm = 0 are at right angles.


If l1, m1, n1 ; l2, m2, n2 ; l3, m3, n3 are the direction cosines of three mutually perpendicular lines, prove that the line whose direction cosines are proportional to l1 + l2 + l3, m1 + m2 + m3, n1 + n2 + n3 makes equal angles with them.


If the directions cosines of a line are k, k, k, then ______.


The locus represented by xy + yz = 0 is ______.


The cartesian equation of the plane `vecr * (hati + hatj - hatk)` is ______.


The vector equation of the line `(x - 5)/3 = (y + 4)/7 = (z - 6)/2` is `vecr = (5hati - 4hatj + 6hatk) + lambda(3hati + 7hatj - 2hatk)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×