मराठी

Find the Ratio in Which the Sphere X2 + Y2 + Z2 = 504 Divides the Line Joining the Points (12, –4, 8) and (27, –9, 18). - Mathematics

Advertisements
Advertisements

प्रश्न

Find the ratio in which the sphere x2 + y2 z2 = 504 divides the line joining the points (12, –4, 8) and (27, –9, 18).

उत्तर

Let the sphere `x^2+y^2+z^2=504` meet the line joining the given points at the point (x1y1z1).

Then, we have:

`x_1^2+y_1^2+z_1^2=504`         .............(1)

Suppose the point (x1y1z1) divides the line joining the points  (12, – 4, 8) and (27, – 9, 18) in the ratio λ:1.

∴`x_1=(27 λ+12)/( λ+1), y_1=(-9λ-4)/(λ+1),z_1=(18λ+8)/(λ+1)`

Substitute these values in equation (1):

`(27λ+12)^2/(λ+1)^2+(-9λ-4)^2/(λ+1)^2+(18λ+8)^2/(λ+1)^2=504`

⇒` 9(9λ+4)^2+(9λ+4)^2+4(9λ+4)^2=504(λ+1)^2`

⇒`9λ+4=+-6(λ+1)`

⇒`λ=+-2/3`

Thus, the sphere divides the line joining the given points in the ratio 2:3 and 2:– 3.

Hence, the given sphere `x^2+y^2+z^2=504` divides the line joining the points (12, – 4, 8) and (27, – 9, 18) internally in the ratio 2:3 and externally in the ratio −2:3.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 28: Introduction to three dimensional coordinate geometry - Exercise 28.3 [पृष्ठ २०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 28 Introduction to three dimensional coordinate geometry
Exercise 28.3 | Q 9 | पृष्ठ २०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

If the origin is the centroid of the triangle PQR with vertices P (2a, 2, 6), Q (–4, 3b, –10) and R (8, 14, 2c), then find the values of a, b and c.


Name the octants in which the following points lie: 

(–5, –4, 7) 


Find the image  of: 

 (–4, 0, 0) in the xy-plane. 


A cube of side 5 has one vertex at the point (1, 0, –1), and the three edges from this vertex are, respectively, parallel to the negative x and y axes and positive z-axis. Find the coordinates of the other vertices of the cube.


Determine the points in zx-plane are equidistant from the points A(1, –1, 0), B(2, 1, 2) and C(3, 2, –1). 


If A(–2, 2, 3) and B(13, –3, 13) are two points.
Find the locus of a point P which moves in such a way the 3PA = 2PB.


Verify the following: 

 (–1, 2, 1), (1, –2, 5), (4, –7, 8) and (2, –3, 4) are vertices of a parallelogram.


Verify the following:

 (5, –1, 1), (7, –4,7), (1, –6,10) and (–1, – 3,4) are the vertices of a rhombus.


Write the distance of the point P(3, 4, 5) from z-axis.


What is the locus of a point for which y = 0, z = 0?


Find the point on y-axis which is at a distance of  \[\sqrt{10}\] units from the point (1, 2, 3).


The ratio in which the line joining (2, 4, 5) and (3, 5, –9) is divided by the yz-plane is


What is the locus of a point for which y = 0, z = 0?


The coordinates of the foot of the perpendicular drawn from the point P(3, 4, 5) on the yz- plane are


The length of the perpendicular drawn from the point P (3, 4, 5) on y-axis is 


The perpendicular distance of the point P(3, 3,4) from the x-axis is 


The length of the perpendicular drawn from the point P(a, b, c) from z-axis is 


Find the direction cosines of the line passing through the points P(2, 3, 5) and Q(–1, 2, 4).


If a line makes an angle of 30°, 60°, 90° with the positive direction of x, y, z-axes, respectively, then find its direction cosines.


Find the coordinates of the point where the line through (3, – 4, – 5) and (2, –3, 1) crosses the plane passing through three points (2, 2, 1), (3, 0, 1) and (4, –1, 0)


A plane meets the co-ordinates axis in A, B, C such that the centroid of the ∆ABC is the point (α, β, γ). Show that the equation of the plane is `x/alpha + y/beta + z/γ` = 3


Find the image of the point (1, 6, 3) in the line `x/1 = (y - 1)/2 = (z - 2)/3`


Find the image of the point having position vector `hati + 3hatj + 4hatk` in the plane `hatr * (2hati - hatj + hatk)` + 3 = 0.


The coordinates of the foot of the perpendicular drawn from the point (2, 5, 7) on the x-axis are given by ______.


If α, β, γ are the angles that a line makes with the positive direction of x, y, z axis, respectively, then the direction cosines of the line are ______.


If a line makes angles α, β, γ with the positive directions of the coordinate axes, then the value of sin2α + sin2β + sin2γ is ______.


If a variable line in two adjacent positions has direction cosines l, m, n and l + δl, m + δm, n + δn, show that the small angle δθ between the two positions is given by δθ2 = δl2 + δm2 + δn2


Two systems of rectangular axis have the same origin. If a plane cuts them at distances a, b, c and a′, b′, c′, respectively, from the origin, prove that

`1/a^2 + 1/b^2 + 1/c^2 = 1/(a"'"^2) + 1/(b"'"^2) + 1/(c"'"^2)`


The plane ax + by = 0 is rotated about its line of intersection with the plane z = 0 through an angle α. Prove that the equation of the plane in its new position is ax + by `+- (sqrt(a^2 + b^2) tan alpha)z ` = 0


The plane 2x – 3y + 6z – 11 = 0 makes an angle sin–1(α) with x-axis. The value of α is equal to ______.


The direction cosines of the vector `(2hati + 2hatj - hatk)` are ______.


The vector equation of the line through the points (3, 4, –7) and (1, –1, 6) is ______.


The unit vector normal to the plane x + 2y +3z – 6 = 0 is `1/sqrt(14)hati + 2/sqrt(14)hatj + 3/sqrt(14)hatk`.


The angle between the planes `vecr.(2hati - 3hatj + hatk)` = 1 and `vecr.(hati - hatj)` = 4 is `cos^-1((-5)/sqrt(58))`.


The line `vecr = 2hati - 3hatj - hatk + lambda(hati - hatj + 2hatk)` lies in the plane `vecr.(3hati + hatj - hatk) + 2` = 0.


The vector equation of the line `(x - 5)/3 = (y + 4)/7 = (z - 6)/2` is `vecr = (5hati - 4hatj + 6hatk) + lambda(3hati + 7hatj - 2hatk)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×