मराठी

The unit vector normal to the plane x + 2y +3z – 6 = 0 is 114i^+214j^+314k^. - Mathematics

Advertisements
Advertisements

प्रश्न

The unit vector normal to the plane x + 2y +3z – 6 = 0 is `1/sqrt(14)hati + 2/sqrt(14)hatj + 3/sqrt(14)hatk`.

पर्याय

  • True

  • False

MCQ
चूक किंवा बरोबर

उत्तर

This statement is True.

Explanation:

We have, `vecn = hati + 2hatj + 3hatk`

∴ `hatn = (hati + 2hatj + 3hatk)/sqrt(1^2 + 2^2 + 3^2)`

= `hati/sqrt(14) + (2hatj)/sqrt(14) + (3hatk)/sqrt(14)`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 12: Introduction to Three Dimensional Geometry - Exercise [पृष्ठ २३९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 12 Introduction to Three Dimensional Geometry
Exercise | Q 42 | पृष्ठ २३९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Name the octants in which the following points lie: 

 (7, 4, –3)


Find the image  of:

 (5, 2, –7) in the xy-plane.


Find the distances of the point P(–4, 3, 5) from the coordinate axes. 


Determine the point on z-axis which is equidistant from the points (1, 5, 7) and (5, 1, –4).


Find the coordinates of the point which is equidistant  from the four points O(0, 0, 0), A(2, 0, 0), B(0, 3, 0) and C(0, 0, 8).


Are the points A(3, 6, 9), B(10, 20, 30) and C(25, –41, 5), the vertices of a right-angled triangle?


Show that the points A(1, 2, 3), B(–1, –2, –1), C(2, 3, 2) and D(4, 7, 6) are the vertices of a parallelogram ABCD, but not a rectangle.


Show that the plane ax + by cz + d = 0 divides the line joining the points (x1y1z1) and (x2y2z2) in the ratio \[- \frac{a x_1 + b y_1 + c z_1 + d}{a x_2 + b y_2 + c z_2 + d}\]


The coordinates of the mid-points of sides AB, BC and CA of  △ABC are D(1, 2, −3), E(3, 0,1) and F(−1, 1, −4) respectively. Write the coordinates of its centroid.


Write the coordinates of the foot of the perpendicular from the point (1, 2, 3) on y-axis.


The ratio in which the line joining the points (a, b, c) and (–a, –c, –b) is divided by the xy-plane is


Let (3, 4, –1) and (–1, 2, 3) be the end points of a diameter of a sphere. Then, the radius of the sphere is equal to 


XOZ-plane divides the join of (2, 3, 1) and (6, 7, 1) in the ratio


What is the locus of a point for which y = 0, z = 0?


The perpendicular distance of the point P (6, 7, 8) from xy - plane is


If the direction ratios of a line are 1, 1, 2, find the direction cosines of the line.


If a line makes an angle of 30°, 60°, 90° with the positive direction of x, y, z-axes, respectively, then find its direction cosines.


Find the coordinates of the point where the line through (3, – 4, – 5) and (2, –3, 1) crosses the plane passing through three points (2, 2, 1), (3, 0, 1) and (4, –1, 0)


Find the image of the point (1, 6, 3) in the line `x/1 = (y - 1)/2 = (z - 2)/3`


Find the equation of the plane through the points (2, 1, 0), (3, –2, –2) and (3, 1, 7).


Find the angle between the lines whose direction cosines are given by the equations l + m + n = 0, l2 + m2 – n2 = 0


Find the equation of the plane through the points (2, 1, –1) and (–1, 3, 4), and perpendicular to the plane x – 2y + 4z = 10.


Find the equation of the plane which is perpendicular to the plane 5x + 3y + 6z + 8 = 0 and which contains the line of intersection of the planes x + 2y + 3z – 4 = 0 and 2x + y – z + 5 = 0.


Show that the points `(hati - hatj + 3hatk)` and `3(hati + hatj + hatk)` are equidistant from the plane `vecr * (5hati + 2hatj - 7hatk) + 9` = 0 and lies on opposite side of it.


The area of the quadrilateral ABCD, where A(0, 4, 1), B(2,  3, –1), C(4, 5, 0) and D(2, 6, 2), is equal to ______.


The vector equation of the line `(x - 5)/3 = (y + 4)/7 = (z - 6)/2` is ______.


The cartesian equation of the plane `vecr * (hati + hatj - hatk)` is ______.


The vector equation of the line `(x - 5)/3 = (y + 4)/7 = (z - 6)/2` is `vecr = (5hati - 4hatj + 6hatk) + lambda(3hati + 7hatj - 2hatk)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×