Advertisements
Advertisements
प्रश्न
Are the points A(3, 6, 9), B(10, 20, 30) and C(25, –41, 5), the vertices of a right-angled triangle?
उत्तर
Let A(3,6,9), B(10,20,30) and C( 25,\[-\]41,5) are vertices of \[\bigtriangleup ABC\]
AB =\[\sqrt{\left( 10 - 3 \right)^2 + \left( 20 - 6 \right)^2 + \left( 30 - 9 \right)^2}\]
\[= \sqrt{\left( 7 \right)^2 + \left( 14 \right)^2 + \left( 21 \right)^2}\]
\[ = \sqrt{49 + 196 + 441}\]
\[ = \sqrt{686}\]
\[ = 7\sqrt{14}\]
BC =\[\sqrt{\left( 25 - 10 \right)^2 + \left( - 41 - 20 \right)^2 + \left( 5 - 30 \right)^2}\]
\[= \sqrt{\left( 15 \right)^2 + \left( - 61 \right)^2 + \left( - 25 \right)^2}\]
\[ = \sqrt{225 + 3721 + 625}\]
\[ = \sqrt{4571}\]
CA=\[\sqrt{\left( 3 - 25 \right)^2 + \left( 6 + 41 \right)^2 + \left( 9 - 5 \right)^2}\]
\[= \sqrt{\left( - 22 \right)^2 + \left( 47 \right)^2 + \left( - 4 \right)^2}\]
\[ = \sqrt{484 + 2209 + 16}\]
\[ = \sqrt{2709}\]
\[ = 3\sqrt[]{301}\]
\[A B^2 + B C^2 = \left( 7\sqrt{14} \right)^2 + \left( \sqrt{4571} \right)^2 \]
\[ = 686 + 4571\]
\[ = 5257\]
\[C A^2 = 2709\]
\[ \therefore A B^2 + B C^2 \neq C A^2\]
A triangle\[\bigtriangleup ABC\]is right-angled at B if \[C A^2 = A B^2 + B C^2\]
But,\[C A^2\] ≠\[A B^2 + B C^2\]Hence, the points are not vertices of a right-angled triangle.
APPEARS IN
संबंधित प्रश्न
If the origin is the centroid of the triangle PQR with vertices P (2a, 2, 6), Q (–4, 3b, –10) and R (8, 14, 2c), then find the values of a, b and c.
Name the octants in which the following points lie:
(4, –3, 5)
Name the octants in which the following points lie:
(–7, 2 – 5)
Find the image of:
(–2, 3, 4) in the yz-plane.
Planes are drawn parallel to the coordinate planes through the points (3, 0, –1) and (–2, 5, 4). Find the lengths of the edges of the parallelepiped so formed.
Prove that the triangle formed by joining the three points whose coordinates are (1, 2, 3), (2, 3, 1) and (3, 1, 2) is an equilateral triangle.
Show that the points A(3, 3, 3), B(0, 6, 3), C(1, 7, 7) and D(4, 4, 7) are the vertices of a square.
Verify the following:
(0, 7, 10), (–1, 6, 6) and (–4, 9, –6) are vertices of a right-angled triangle.
Verify the following:
(–1, 2, 1), (1, –2, 5), (4, –7, 8) and (2, –3, 4) are vertices of a parallelogram.
Find the equation of the set of the points P such that its distances from the points A(3, 4, –5) and B(–2, 1, 4) are equal.
Show that the plane ax + by + cz + d = 0 divides the line joining the points (x1, y1, z1) and (x2, y2, z2) in the ratio \[- \frac{a x_1 + b y_1 + c z_1 + d}{a x_2 + b y_2 + c z_2 + d}\]
Write the distance of the point P (2, 3,5) from the xy-plane.
The coordinates of the mid-points of sides AB, BC and CA of △ABC are D(1, 2, −3), E(3, 0,1) and F(−1, 1, −4) respectively. Write the coordinates of its centroid.
Find the point on y-axis which is at a distance of \[\sqrt{10}\] units from the point (1, 2, 3).
The ratio in which the line joining the points (a, b, c) and (–a, –c, –b) is divided by the xy-plane is
XOZ-plane divides the join of (2, 3, 1) and (6, 7, 1) in the ratio
The perpendicular distance of the point P (6, 7, 8) from xy - plane is
If a line makes an angle of 30°, 60°, 90° with the positive direction of x, y, z-axes, respectively, then find its direction cosines.
If α, β, γ are the angles that a line makes with the positive direction of x, y, z axis, respectively, then the direction cosines of the line are ______.
If a line makes angles `pi/2, 3/4 pi` and `pi/4` with x, y, z axis, respectively, then its direction cosines are ______.
If a line makes an angle of `pi/4` with each of y and z axis, then the angle which it makes with x-axis is ______.
Find the equations of the two lines through the origin which intersect the line `(x - 3)/2 = (y - 3)/1 = z/1` at angles of `pi/3` each.
Find the angle between the lines whose direction cosines are given by the equations l + m + n = 0, l2 + m2 – n2 = 0
If a variable line in two adjacent positions has direction cosines l, m, n and l + δl, m + δm, n + δn, show that the small angle δθ between the two positions is given by δθ2 = δl2 + δm2 + δn2
O is the origin and A is (a, b, c). Find the direction cosines of the line OA and the equation of plane through A at right angle to OA.
The plane ax + by = 0 is rotated about its line of intersection with the plane z = 0 through an angle α. Prove that the equation of the plane in its new position is ax + by `+- (sqrt(a^2 + b^2) tan alpha)z ` = 0
The direction cosines of the vector `(2hati + 2hatj - hatk)` are ______.
The angle between the line `vecr = (5hati - hatj - 4hatk) + lambda(2hati - hatj + hatk)` and the plane `vec.(3hati - 4hatj - hatk)` + 5 = 0 is `sin^-1(5/(2sqrt(91)))`.
The angle between the planes `vecr.(2hati - 3hatj + hatk)` = 1 and `vecr.(hati - hatj)` = 4 is `cos^-1((-5)/sqrt(58))`.
The line `vecr = 2hati - 3hatj - hatk + lambda(hati - hatj + 2hatk)` lies in the plane `vecr.(3hati + hatj - hatk) + 2` = 0.
The vector equation of the line `(x - 5)/3 = (y + 4)/7 = (z - 6)/2` is `vecr = (5hati - 4hatj + 6hatk) + lambda(3hati + 7hatj - 2hatk)`.
If the foot of perpendicular drawn from the origin to a plane is (5, – 3, – 2), then the equation of plane is `vecr.(5hati - 3hatj - 2hatk)` = 38.