मराठी

Prove that the Triangle Formed by Joining the Three Points Whose Coordinates Are (1, 2, 3), (2, 3, 1) and (3, 1, 2) is an Equilateral Triangle. - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that the triangle formed by joining the three points whose coordinates are (1, 2, 3), (2, 3, 1) and (3, 1, 2) is an equilateral triangle.

उत्तर

Let A (1, 2, 3) , B (2, 3, 1) and C (3, 1, 2) are the coordinates of the triangle \[\bigtriangleup ABC\]

AB =\[\sqrt{\left( 2 - 1 \right)^2 + \left( 3 - 2 \right)^2 + \left( 1 - 3 \right)^2}\]

\[= \sqrt{\left( 1 \right)^2 + \left( 1 \right)^2 + \left( - 2 \right)^2}\]
\[ = \sqrt{1 + 1 + 4}\]
\[ = \sqrt{6}\] 

BC =\[\sqrt{\left( 3 - 2 \right)^2 + \left( 1 - 3 \right)^2 + \left( 2 - 1 \right)^2}\] 

\[= \sqrt{\left( 1 \right)^2 + \left( - 2 \right)^2 + \left( 1 \right)^2}\]
\[ = \sqrt{1 + 4 + 1}\]
\[ = \sqrt{6}\] 
 AC =\[\sqrt{\left( 3 - 1 \right)^2 + \left( 1 - 2 \right)^2 + \left( 2 - 3 \right)^2}\]
\[= \sqrt{\left( 2 \right)^2 + \left( - 1 \right)^2 + \left( - 1 \right)^2}\]
\[ = \sqrt{4 + 1 + 1}\]
\[ = \sqrt{6}\]
Now, AB = BC = AC

Therefore, it is an equilateral triangle.
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 28: Introduction to three dimensional coordinate geometry - Exercise 28.2 [पृष्ठ ९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 28 Introduction to three dimensional coordinate geometry
Exercise 28.2 | Q 8 | पृष्ठ ९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Name the octants in which the following points lie: (5, 2, 3)


Name the octants in which the following points lie:

(–5, 4, 3) 


Name the octants in which the following points lie: 

(4, –3, 5)


Name the octants in which the following points lie: 

(–5, –4, 7) 


Name the octants in which the following points lie:

 (2, –5, –7) 


Name the octants in which the following points lie: 

(–7, 2 – 5)


Find the image  of:

 (5, 2, –7) in the xy-plane.


Find the image  of: 

 (–4, 0, 0) in the xy-plane. 


A cube of side 5 has one vertex at the point (1, 0, –1), and the three edges from this vertex are, respectively, parallel to the negative x and y axes and positive z-axis. Find the coordinates of the other vertices of the cube.


Find the distances of the point P(–4, 3, 5) from the coordinate axes. 


Find the points on z-axis which are at a distance \[\sqrt{21}\]from the point (1, 2, 3). 


Show that the points A(3, 3, 3), B(0, 6, 3), C(1, 7, 7) and D(4, 4, 7) are the vertices of a square.


Verify the following: 

 (–1, 2, 1), (1, –2, 5), (4, –7, 8) and (2, –3, 4) are vertices of a parallelogram.


Find the locus of the point, the sum of whose distances from the points A(4, 0, 0) and B(–4, 0, 0) is equal to 10.


Show that the points A(1, 2, 3), B(–1, –2, –1), C(2, 3, 2) and D(4, 7, 6) are the vertices of a parallelogram ABCD, but not a rectangle.


Find the equation of the set of the points P such that its distances from the points A(3, 4, –5) and B(–2, 1, 4) are equal.


Show that the plane ax + by cz + d = 0 divides the line joining the points (x1y1z1) and (x2y2z2) in the ratio \[- \frac{a x_1 + b y_1 + c z_1 + d}{a x_2 + b y_2 + c z_2 + d}\]


Write the coordinates of the foot of the perpendicular from the point (1, 2, 3) on y-axis.


What is the locus of a point for which y = 0, z = 0?


The perpendicular distance of the point P (6, 7, 8) from xy - plane is


The length of the perpendicular drawn from the point P (3, 4, 5) on y-axis is 


The perpendicular distance of the point P(3, 3,4) from the x-axis is 


The length of the perpendicular drawn from the point P(a, b, c) from z-axis is 


If a line makes an angle of 30°, 60°, 90° with the positive direction of x, y, z-axes, respectively, then find its direction cosines.


Find the image of the point having position vector `hati + 3hatj + 4hatk` in the plane `hatr * (2hati - hatj + hatk)` + 3 = 0.


The coordinates of the foot of the perpendicular drawn from the point (2, 5, 7) on the x-axis are given by ______.


If α, β, γ are the angles that a line makes with the positive direction of x, y, z axis, respectively, then the direction cosines of the line are ______.


A line makes equal angles with co-ordinate axis. Direction cosines of this line are ______.


If a line makes an angle of `pi/4` with each of y and z axis, then the angle which it makes with x-axis is ______.


If a variable line in two adjacent positions has direction cosines l, m, n and l + δl, m + δm, n + δn, show that the small angle δθ between the two positions is given by δθ2 = δl2 + δm2 + δn2


Two systems of rectangular axis have the same origin. If a plane cuts them at distances a, b, c and a′, b′, c′, respectively, from the origin, prove that

`1/a^2 + 1/b^2 + 1/c^2 = 1/(a"'"^2) + 1/(b"'"^2) + 1/(c"'"^2)`


Find the equations of the line passing through the point (3,0,1) and parallel to the planes x + 2y = 0 and 3y – z = 0.


Find the equation of the plane through the points (2, 1, –1) and (–1, 3, 4), and perpendicular to the plane x – 2y + 4z = 10.


Find the equation of the plane which is perpendicular to the plane 5x + 3y + 6z + 8 = 0 and which contains the line of intersection of the planes x + 2y + 3z – 4 = 0 and 2x + y – z + 5 = 0.


The plane ax + by = 0 is rotated about its line of intersection with the plane z = 0 through an angle α. Prove that the equation of the plane in its new position is ax + by `+- (sqrt(a^2 + b^2) tan alpha)z ` = 0


The intercepts made by the plane 2x – 3y + 5z +4 = 0 on the co-ordinate axis are `-2, 4/3, - 4/5`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×