Advertisements
Advertisements
प्रश्न
Verify the following:
(–1, 2, 1), (1, –2, 5), (4, –7, 8) and (2, –3, 4) are vertices of a parallelogram.
उत्तर
Let A(\[-\]1, 2, 1) , B(1, \[-\]7, 8), D(2, \[-\]3, 4) be the vertices of quadrilateral \[\square ABCD\]
\[ = \sqrt{4 + 16 + 16}\]
\[ = \sqrt{36}\]
\[ = 6\]
\[BC = \sqrt{\left( 4 - 1 \right)^2 + \left( - 7 + 2 \right)^2 + \left( 8 - 5 \right)^2}\]
\[ = \sqrt{9 + 25 + 9}\]
\[ = \sqrt{43}\]
\[CD = \sqrt{\left( 2 - 4 \right)^2 + \left( - 3 + 7 \right)^2 + \left( 4 - 8 \right)^2}\]
\[ = \sqrt{4 + 16 + 16}\]
\[ = \sqrt{36}\]
\[ = 6\]
\[DA = \sqrt{\left( - 1 - 2 \right)^2 + \left( 2 + 3 \right)^2 + \left( 1 - 4 \right)^2}\]
\[ = \sqrt{9 + 25 + 9}\]
\[ = \sqrt{43}\]
\[ \therefore AB = CD \text{ and } BC = DA\]
Since, each pair of opposite sides are equal.
Thus, quadrilateral \[\square ABCD\]is a parallelogram.
APPEARS IN
संबंधित प्रश्न
The x-axis and y-axis taken together determine a plane known as_______.
If the origin is the centroid of the triangle PQR with vertices P (2a, 2, 6), Q (–4, 3b, –10) and R (8, 14, 2c), then find the values of a, b and c.
Name the octants in which the following points lie:
(–5, –4, 7)
Name the octants in which the following points lie:
(–5, –3, –2)
Name the octants in which the following points lie:
(–7, 2 – 5)
Find the image of:
(–5, 4, –3) in the xz-plane.
Find the image of:
(5, 2, –7) in the xy-plane.
Planes are drawn parallel to the coordinate planes through the points (3, 0, –1) and (–2, 5, 4). Find the lengths of the edges of the parallelepiped so formed.
The coordinates of a point are (3, –2, 5). Write down the coordinates of seven points such that the absolute values of their coordinates are the same as those of the coordinates of the given point.
Show that the points A(3, 3, 3), B(0, 6, 3), C(1, 7, 7) and D(4, 4, 7) are the vertices of a square.
Show that the points (a, b, c), (b, c, a) and (c, a, b) are the vertices of an equilateral triangle.
Are the points A(3, 6, 9), B(10, 20, 30) and C(25, –41, 5), the vertices of a right-angled triangle?
Verify the following:
(0, 7, –10), (1, 6, –6) and (4, 9, –6) are vertices of an isosceles triangle.
Verify the following:
(0, 7, 10), (–1, 6, 6) and (–4, 9, –6) are vertices of a right-angled triangle.
Find the locus of the points which are equidistant from the points (1, 2, 3) and (3, 2, –1).
Find the equation of the set of the points P such that its distances from the points A(3, 4, –5) and B(–2, 1, 4) are equal.
Find the ratio in which the sphere x2 + y2 + z2 = 504 divides the line joining the points (12, –4, 8) and (27, –9, 18).
What is the locus of a point for which y = 0, z = 0?
Find the point on y-axis which is at a distance of \[\sqrt{10}\] units from the point (1, 2, 3).
The ratio in which the line joining (2, 4, 5) and (3, 5, –9) is divided by the yz-plane is
XOZ-plane divides the join of (2, 3, 1) and (6, 7, 1) in the ratio
Find the direction cosines of the line passing through the points P(2, 3, 5) and Q(–1, 2, 4).
If a line makes an angle of 30°, 60°, 90° with the positive direction of x, y, z-axes, respectively, then find its direction cosines.
The x-coordinate of a point on the line joining the points Q(2, 2, 1) and R(5, 1, –2) is 4. Find its z-coordinate.
Find the coordinates of the point where the line through (3, – 4, – 5) and (2, –3, 1) crosses the plane passing through three points (2, 2, 1), (3, 0, 1) and (4, –1, 0)
A plane meets the co-ordinates axis in A, B, C such that the centroid of the ∆ABC is the point (α, β, γ). Show that the equation of the plane is `x/alpha + y/beta + z/γ` = 3
Find the image of the point (1, 6, 3) in the line `x/1 = (y - 1)/2 = (z - 2)/3`
If α, β, γ are the angles that a line makes with the positive direction of x, y, z axis, respectively, then the direction cosines of the line are ______.
If a line makes angles `pi/2, 3/4 pi` and `pi/4` with x, y, z axis, respectively, then its direction cosines are ______.
Find the equation of the plane through the points (2, 1, 0), (3, –2, –2) and (3, 1, 7).
Find the equations of the line passing through the point (3,0,1) and parallel to the planes x + 2y = 0 and 3y – z = 0.
If the directions cosines of a line are k, k, k, then ______.
The locus represented by xy + yz = 0 is ______.
The vector equation of the line `(x - 5)/3 = (y + 4)/7 = (z - 6)/2` is ______.
The unit vector normal to the plane x + 2y +3z – 6 = 0 is `1/sqrt(14)hati + 2/sqrt(14)hatj + 3/sqrt(14)hatk`.
The vector equation of the line `(x - 5)/3 = (y + 4)/7 = (z - 6)/2` is `vecr = (5hati - 4hatj + 6hatk) + lambda(3hati + 7hatj - 2hatk)`.