Advertisements
Advertisements
प्रश्न
Show that the points (a, b, c), (b, c, a) and (c, a, b) are the vertices of an equilateral triangle.
उत्तर
Let A(a,b,c) , B(b,c,a) and C(c,a,b) be the vertices of \[\bigtriangleup ABC\] Then,AB =\[\sqrt{\left( b - a \right)^2 + \left( c - b \right)^2 + \left( a - c \right)^2}\]
\[= \sqrt{b^2 - 2ab + a^2 + c^2 - 2bc + b^2 + a^2 - 2ca + c^2}\]
\[ = \sqrt{2 a^2 + 2 b^2 + 2 c^2 - 2ab - 2bc - 2ca}\]
\[ = \sqrt{2\left( a^2 + b^2 + c^2 - ab - bc - ca \right)}\]
BC =\[\sqrt{\left( c - b \right)^2 + \left( a - c \right)^2 + \left( b - a \right)^2}\]
\[= \sqrt{c^2 - 2bc + b^2 + a^2 - 2ca + c^2 + b^2 - 2ab + a^2}\]
\[ = \sqrt{2 a^2 + 2 b^2 + 2 c^2 - 2ab - 2bc - 2ca}\]
\[ = \sqrt{2\left( a^2 + b^2 + c^2 - ab - bc - ca \right)}\]
CA =\[\sqrt{\left( a - c \right)^2 + \left( b - a \right)^2 + \left( c - b \right)^2}\]
\[= \sqrt{a^2 - 2ca + c^2 + b^2 - 2ab + a^2 + c^2 - 2bc + b^2}\]
\[ = \sqrt{2 a^2 + 2 b^2 + 2 c^2 - 2ab - 2bc - 2ca}\]
\[ = \sqrt{2\left( a^2 + b^2 + c^2 - ab - bc - ca \right)}\]
\[\therefore\]AB = BC = CA
Therefore,\[\bigtriangleup ABC\] is an equilateral triangle.
APPEARS IN
संबंधित प्रश्न
Name the octants in which the following points lie:
(1, 2, 3), (4, –2, 3), (4, –2, –5), (4, 2, –5), (–4, 2, –5), (–4, 2, 5),
(–3, –1, 6), (2, –4, –7).
Three vertices of a parallelogram ABCD are A (3, –1, 2), B (1, 2, –4) and C (–1, 1, 2). Find the coordinates of the fourth vertex.
Name the octants in which the following points lie:
(7, 4, –3)
Name the octants in which the following points lie:
(–5, –3, –2)
Find the image of:
(–5, 4, –3) in the xz-plane.
Find the image of:
(–4, 0, 0) in the xy-plane.
Determine the point on z-axis which is equidistant from the points (1, 5, 7) and (5, 1, –4).
Find the point on y-axis which is equidistant from the points (3, 1, 2) and (5, 5, 2).
Show that the points A(3, 3, 3), B(0, 6, 3), C(1, 7, 7) and D(4, 4, 7) are the vertices of a square.
If A(–2, 2, 3) and B(13, –3, 13) are two points.
Find the locus of a point P which moves in such a way the 3PA = 2PB.
Are the points A(3, 6, 9), B(10, 20, 30) and C(25, –41, 5), the vertices of a right-angled triangle?
Verify the following:
(5, –1, 1), (7, –4,7), (1, –6,10) and (–1, – 3,4) are the vertices of a rhombus.
Find the equation of the set of the points P such that its distances from the points A(3, 4, –5) and B(–2, 1, 4) are equal.
Show that the plane ax + by + cz + d = 0 divides the line joining the points (x1, y1, z1) and (x2, y2, z2) in the ratio \[- \frac{a x_1 + b y_1 + c z_1 + d}{a x_2 + b y_2 + c z_2 + d}\]
Write the distance of the point P (2, 3,5) from the xy-plane.
Write the coordinates of the foot of the perpendicular from the point (1, 2, 3) on y-axis.
Write the length of the perpendicular drawn from the point P(3, 5, 12) on x-axis.
The ratio in which the line joining (2, 4, 5) and (3, 5, –9) is divided by the yz-plane is
Let (3, 4, –1) and (–1, 2, 3) be the end points of a diameter of a sphere. Then, the radius of the sphere is equal to
The coordinates of the foot of the perpendicular from a point P(6,7, 8) on x - axis are
The length of the perpendicular drawn from the point P (3, 4, 5) on y-axis is
Find the direction cosines of the line passing through the points P(2, 3, 5) and Q(–1, 2, 4).
Find the co-ordinates of the foot of perpendicular drawn from the point A(1, 8, 4) to the line joining the points B(0, –1, 3) and C(2, –3, –1).
Find the image of the point (1, 6, 3) in the line `x/1 = (y - 1)/2 = (z - 2)/3`
Find the image of the point having position vector `hati + 3hatj + 4hatk` in the plane `hatr * (2hati - hatj + hatk)` + 3 = 0.
The coordinates of the foot of the perpendicular drawn from the point (2, 5, 7) on the x-axis are given by ______.
A line makes equal angles with co-ordinate axis. Direction cosines of this line are ______.
If a line makes angles α, β, γ with the positive directions of the coordinate axes, then the value of sin2α + sin2β + sin2γ is ______.
Find the equations of the two lines through the origin which intersect the line `(x - 3)/2 = (y - 3)/1 = z/1` at angles of `pi/3` each.
Show that the points `(hati - hatj + 3hatk)` and `3(hati + hatj + hatk)` are equidistant from the plane `vecr * (5hati + 2hatj - 7hatk) + 9` = 0 and lies on opposite side of it.
If l1, m1, n1 ; l2, m2, n2 ; l3, m3, n3 are the direction cosines of three mutually perpendicular lines, prove that the line whose direction cosines are proportional to l1 + l2 + l3, m1 + m2 + m3, n1 + n2 + n3 makes equal angles with them.
The locus represented by xy + yz = 0 is ______.
The cartesian equation of the plane `vecr * (hati + hatj - hatk)` is ______.
The angle between the planes `vecr.(2hati - 3hatj + hatk)` = 1 and `vecr.(hati - hatj)` = 4 is `cos^-1((-5)/sqrt(58))`.
The vector equation of the line `(x - 5)/3 = (y + 4)/7 = (z - 6)/2` is `vecr = (5hati - 4hatj + 6hatk) + lambda(3hati + 7hatj - 2hatk)`.
If the foot of perpendicular drawn from the origin to a plane is (5, – 3, – 2), then the equation of plane is `vecr.(5hati - 3hatj - 2hatk)` = 38.