मराठी

Three vertices of a parallelogram ABCD are A (3, –1, 2), B (1, 2, –4) and C (–1, 1, 2). Find the coordinates of the fourth vertex. - Mathematics

Advertisements
Advertisements

प्रश्न

Three vertices of a parallelogram ABCD are A (3, –1, 2), B (1, 2, –4) and C (–1, 1, 2). Find the coordinates of the fourth vertex.

बेरीज

उत्तर

Vertices A and C are (3, –1, 2), (−1, 1, 2) respectively.

Coordinates of the midpoint P between A and C `((3 - 1)/2, (-1 + 1)/2, (2 + 2)/2)` = (1, 0, 2)

Let the coordinates of point D be (x, y, z) and the coordinates of point B be (1, 2, −4).

∴ Mid point of DB `(("x" + 1)/2, ("y" + 2)/2, ("z" - 4)/2)`

The diagonals of a parallelogram divide each other into 2 equal parts.

Therefore, `("x" + 1)/2 = 1, ("y" + 2)/2 = 0, ("z" - 4)/2 = 2`

Hence, the coordinates of point D are (1, –2, 8).

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 12: Introduction to Three Dimensional Geometry - Miscellaneous Exercise [पृष्ठ २७८]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
पाठ 12 Introduction to Three Dimensional Geometry
Miscellaneous Exercise | Q 1 | पृष्ठ २७८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Name the octants in which the following points lie: 

(–5, –3, –2) 


Find the image  of: 

 (–2, 3, 4) in the yz-plane.


Find the image  of: 

 (–5, 0, 3) in the xz-plane. 


Find the image  of: 

 (–4, 0, 0) in the xy-plane. 


The coordinates of a point are (3, –2, 5). Write down the coordinates of seven points such that the absolute values of their coordinates are the same as those of the coordinates of the given point.


Determine the points in zx-plane are equidistant from the points A(1, –1, 0), B(2, 1, 2) and C(3, 2, –1). 


Find the point on y-axis which is equidistant from the points (3, 1, 2) and (5, 5, 2).


Find the points on z-axis which are at a distance \[\sqrt{21}\]from the point (1, 2, 3). 


Show that the points A(3, 3, 3), B(0, 6, 3), C(1, 7, 7) and D(4, 4, 7) are the vertices of a square.


Find the coordinates of the point which is equidistant  from the four points O(0, 0, 0), A(2, 0, 0), B(0, 3, 0) and C(0, 0, 8).


Show that the points (a, b, c), (b, c, a) and (c, a, b) are the vertices of an equilateral triangle. 


Verify the following: 

(0, 7, 10), (–1, 6, 6) and (–4, 9, –6) are vertices of a right-angled triangle.


Show that the points A(1, 2, 3), B(–1, –2, –1), C(2, 3, 2) and D(4, 7, 6) are the vertices of a parallelogram ABCD, but not a rectangle.


Find the ratio in which the sphere x2 + y2 z2 = 504 divides the line joining the points (12, –4, 8) and (27, –9, 18).


Write the distance of the point P (2, 3,5) from the xy-plane.


Write the distance of the point P(3, 4, 5) from z-axis.


Find the ratio in which the line segment joining the points (2, 4,5) and (3, −5, 4) is divided by the yz-plane.


Find the point on x-axis which is equidistant from the points A (3, 2, 2) and B (5, 5, 4).


XOZ-plane divides the join of (2, 3, 1) and (6, 7, 1) in the ratio


What is the locus of a point for which y = 0, z = 0?


The coordinates of the foot of the perpendicular from a point P(6,7, 8) on x - axis are 


The length of the perpendicular drawn from the point P (3, 4, 5) on y-axis is 


The perpendicular distance of the point P(3, 3,4) from the x-axis is 


If a line makes an angle of 30°, 60°, 90° with the positive direction of x, y, z-axes, respectively, then find its direction cosines.


The x-coordinate of a point on the line joining the points Q(2, 2, 1) and R(5, 1, –2) is 4. Find its z-coordinate.


A plane meets the co-ordinates axis in A, B, C such that the centroid of the ∆ABC is the point (α, β, γ). Show that the equation of the plane is `x/alpha + y/beta + z/γ` = 3


If a line makes an angle of `pi/4` with each of y and z axis, then the angle which it makes with x-axis is ______.


Find the equation of a plane which bisects perpendicularly the line joining the points A(2, 3, 4) and B(4, 5, 8) at right angles.


Find the equation of the plane through the points (2, 1, –1) and (–1, 3, 4), and perpendicular to the plane x – 2y + 4z = 10.


The sine of the angle between the straight line `(x - 2)/3 = (y - 3)/4 = (z - 4)/5` and the plane 2x – 2y + z = 5 is ______.


The vector equation of the line through the points (3, 4, –7) and (1, –1, 6) is ______.


The angle between the line `vecr = (5hati - hatj - 4hatk) + lambda(2hati - hatj + hatk)` and the plane `vec.(3hati - 4hatj - hatk)` + 5 = 0 is `sin^-1(5/(2sqrt(91)))`.


If the foot of perpendicular drawn from the origin to a plane is (5, – 3, – 2), then the equation of plane is `vecr.(5hati - 3hatj - 2hatk)` = 38.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×