हिंदी

Show that the Points (A, B, C), (B, C, A) and (C, A, B) Are the Vertices of an Equilateral Triangle. - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the points (a, b, c), (b, c, a) and (c, a, b) are the vertices of an equilateral triangle. 

उत्तर

Let A(a,b,c) , B(b,c,a) and C(c,a,b) be the vertices of \[\bigtriangleup ABC\] Then,AB =\[\sqrt{\left( b - a \right)^2 + \left( c - b \right)^2 + \left( a - c \right)^2}\] 

\[= \sqrt{b^2 - 2ab + a^2 + c^2 - 2bc + b^2 + a^2 - 2ca + c^2}\]
\[ = \sqrt{2 a^2 + 2 b^2 + 2 c^2 - 2ab - 2bc - 2ca}\]
\[ = \sqrt{2\left( a^2 + b^2 + c^2 - ab - bc - ca \right)}\]
BC =\[\sqrt{\left( c - b \right)^2 + \left( a - c \right)^2 + \left( b - a \right)^2}\]

\[= \sqrt{c^2 - 2bc + b^2 + a^2 - 2ca + c^2 + b^2 - 2ab + a^2}\]
\[ = \sqrt{2 a^2 + 2 b^2 + 2 c^2 - 2ab - 2bc - 2ca}\]
\[ = \sqrt{2\left( a^2 + b^2 + c^2 - ab - bc - ca \right)}\]
CA =\[\sqrt{\left( a - c \right)^2 + \left( b - a \right)^2 + \left( c - b \right)^2}\]

\[= \sqrt{a^2 - 2ca + c^2 + b^2 - 2ab + a^2 + c^2 - 2bc + b^2}\]
\[ = \sqrt{2 a^2 + 2 b^2 + 2 c^2 - 2ab - 2bc - 2ca}\]
\[ = \sqrt{2\left( a^2 + b^2 + c^2 - ab - bc - ca \right)}\]
\[\therefore\]AB = BC CA
Therefore,\[\bigtriangleup ABC\] is an equilateral triangle.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 28: Introduction to three dimensional coordinate geometry - Exercise 28.2 [पृष्ठ १०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 28 Introduction to three dimensional coordinate geometry
Exercise 28.2 | Q 18 | पृष्ठ १०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

If the origin is the centroid of the triangle PQR with vertices P (2a, 2, 6), Q (–4, 3b, –10) and R (8, 14, 2c), then find the values of a, b and c.


Name the octants in which the following points lie: 

 (7, 4, –3)


Name the octants in which the following points lie:

 (2, –5, –7) 


Find the image  of: 

 (–2, 3, 4) in the yz-plane.


Find the image  of: 

 (–5, 4, –3) in the xz-plane. 


Find the points on z-axis which are at a distance \[\sqrt{21}\]from the point (1, 2, 3). 


Find the coordinates of the point which is equidistant  from the four points O(0, 0, 0), A(2, 0, 0), B(0, 3, 0) and C(0, 0, 8).


Verify the following: 

 (0, 7, –10), (1, 6, –6) and (4, 9, –6) are vertices of an isosceles triangle.


Verify the following: 

(0, 7, 10), (–1, 6, 6) and (–4, 9, –6) are vertices of a right-angled triangle.


Verify the following: 

 (–1, 2, 1), (1, –2, 5), (4, –7, 8) and (2, –3, 4) are vertices of a parallelogram.


Find the locus of the point, the sum of whose distances from the points A(4, 0, 0) and B(–4, 0, 0) is equal to 10.


Find the equation of the set of the points P such that its distances from the points A(3, 4, –5) and B(–2, 1, 4) are equal.


Find the ratio in which the sphere x2 + y2 z2 = 504 divides the line joining the points (12, –4, 8) and (27, –9, 18).


Show that the plane ax + by cz + d = 0 divides the line joining the points (x1y1z1) and (x2y2z2) in the ratio \[- \frac{a x_1 + b y_1 + c z_1 + d}{a x_2 + b y_2 + c z_2 + d}\]


Write the distance of the point P (2, 3,5) from the xy-plane.


Write the coordinates of the foot of the perpendicular from the point (1, 2, 3) on y-axis.


Write the length of the perpendicular drawn from the point P(3, 5, 12) on x-axis.


What is the locus of a point for which y = 0, z = 0?


The ratio in which the line joining (2, 4, 5) and (3, 5, –9) is divided by the yz-plane is


The ratio in which the line joining the points (a, b, c) and (–a, –c, –b) is divided by the xy-plane is


XOZ-plane divides the join of (2, 3, 1) and (6, 7, 1) in the ratio


The coordinates of the foot of the perpendicular from a point P(6,7, 8) on x - axis are 


The length of the perpendicular drawn from the point P (3, 4, 5) on y-axis is 


If the direction ratios of a line are 1, 1, 2, find the direction cosines of the line.


A plane meets the co-ordinates axis in A, B, C such that the centroid of the ∆ABC is the point (α, β, γ). Show that the equation of the plane is `x/alpha + y/beta + z/γ` = 3


Find the co-ordinates of the foot of perpendicular drawn from the point A(1, 8, 4) to the line joining the points B(0, –1, 3) and C(2, –3, –1).


If α, β, γ are the angles that a line makes with the positive direction of x, y, z axis, respectively, then the direction cosines of the line are ______.


If a line makes angles `pi/2, 3/4 pi` and `pi/4` with x, y, z axis, respectively, then its direction cosines are ______.


If a line makes angles α, β, γ with the positive directions of the coordinate axes, then the value of sin2α + sin2β + sin2γ is ______.


Find the equations of the two lines through the origin which intersect the line `(x - 3)/2 = (y - 3)/1 = z/1` at angles of `pi/3` each.


Find the angle between the lines whose direction cosines are given by the equations l + m + n = 0, l2 + m2 – n2 = 0


Two systems of rectangular axis have the same origin. If a plane cuts them at distances a, b, c and a′, b′, c′, respectively, from the origin, prove that

`1/a^2 + 1/b^2 + 1/c^2 = 1/(a"'"^2) + 1/(b"'"^2) + 1/(c"'"^2)`


The area of the quadrilateral ABCD, where A(0, 4, 1), B(2,  3, –1), C(4, 5, 0) and D(2, 6, 2), is equal to ______.


The vector equation of the line through the points (3, 4, –7) and (1, –1, 6) is ______.


The cartesian equation of the plane `vecr * (hati + hatj - hatk)` is ______.


The vector equation of the line `(x - 5)/3 = (y + 4)/7 = (z - 6)/2` is `vecr = (5hati - 4hatj + 6hatk) + lambda(3hati + 7hatj - 2hatk)`.


If the foot of perpendicular drawn from the origin to a plane is (5, – 3, – 2), then the equation of plane is `vecr.(5hati - 3hatj - 2hatk)` = 38.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×