हिंदी

Find the Image Of: (–2, 3, 4) in The Yz-plane. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the image  of: 

 (–2, 3, 4) in the yz-plane.

उत्तर

(2,3,4)

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 28: Introduction to three dimensional coordinate geometry - Exercise 15.1 [पृष्ठ ६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 28 Introduction to three dimensional coordinate geometry
Exercise 15.1 | Q 2.1 | पृष्ठ ६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

The x-axis and y-axis taken together determine a plane known as_______.


If the origin is the centroid of the triangle PQR with vertices P (2a, 2, 6), Q (–4, 3b, –10) and R (8, 14, 2c), then find the values of a, b and c.


Name the octants in which the following points lie: (5, 2, 3)


Name the octants in which the following points lie: 

 (7, 4, –3)


Name the octants in which the following points lie:

 (2, –5, –7) 


Find the image  of:

 (5, 2, –7) in the xy-plane.


Find the image  of: 

 (–5, 0, 3) in the xz-plane. 


Find the image  of: 

 (–4, 0, 0) in the xy-plane. 


Find the distances of the point P(–4, 3, 5) from the coordinate axes. 


Determine the point on z-axis which is equidistant from the points (1, 5, 7) and (5, 1, –4).


Find the points on z-axis which are at a distance \[\sqrt{21}\]from the point (1, 2, 3). 


Prove that the triangle formed by joining the three points whose coordinates are (1, 2, 3), (2, 3, 1) and (3, 1, 2) is an equilateral triangle.


Find the coordinates of the point which is equidistant  from the four points O(0, 0, 0), A(2, 0, 0), B(0, 3, 0) and C(0, 0, 8).


Find the locus of P if PA2 + PB2 = 2k2, where A and B are the points (3, 4, 5) and (–1, 3, –7).


Show that the points (a, b, c), (b, c, a) and (c, a, b) are the vertices of an equilateral triangle. 


Verify the following: 

 (0, 7, –10), (1, 6, –6) and (4, 9, –6) are vertices of an isosceles triangle.


Verify the following: 

 (–1, 2, 1), (1, –2, 5), (4, –7, 8) and (2, –3, 4) are vertices of a parallelogram.


Show that the plane ax + by cz + d = 0 divides the line joining the points (x1y1z1) and (x2y2z2) in the ratio \[- \frac{a x_1 + b y_1 + c z_1 + d}{a x_2 + b y_2 + c z_2 + d}\]


The coordinates of the mid-points of sides AB, BC and CA of  △ABC are D(1, 2, −3), E(3, 0,1) and F(−1, 1, −4) respectively. Write the coordinates of its centroid.


Write the coordinates of the foot of the perpendicular from the point (1, 2, 3) on y-axis.


Find the point on y-axis which is at a distance of  \[\sqrt{10}\] units from the point (1, 2, 3).


The ratio in which the line joining (2, 4, 5) and (3, 5, –9) is divided by the yz-plane is


The coordinates of the foot of the perpendicular drawn from the point P(3, 4, 5) on the yz- plane are


The coordinates of the foot of the perpendicular from a point P(6,7, 8) on x - axis are 


The length of the perpendicular drawn from the point P (3, 4, 5) on y-axis is 


The x-coordinate of a point on the line joining the points Q(2, 2, 1) and R(5, 1, –2) is 4. Find its z-coordinate.


If α, β, γ are the angles that a line makes with the positive direction of x, y, z axis, respectively, then the direction cosines of the line are ______.


If a line makes angles `pi/2, 3/4 pi` and `pi/4` with x, y, z axis, respectively, then its direction cosines are ______.


If a line makes angles α, β, γ with the positive directions of the coordinate axes, then the value of sin2α + sin2β + sin2γ is ______.


Find the equation of a plane which bisects perpendicularly the line joining the points A(2, 3, 4) and B(4, 5, 8) at right angles.


Find the foot of perpendicular from the point (2,3,–8) to the line `(4 - x)/2 = y/6 = (1 - z)/3`. Also, find the perpendicular distance from the given point to the line.


Find the equations of the line passing through the point (3,0,1) and parallel to the planes x + 2y = 0 and 3y – z = 0.


Find the equation of the plane which is perpendicular to the plane 5x + 3y + 6z + 8 = 0 and which contains the line of intersection of the planes x + 2y + 3z – 4 = 0 and 2x + y – z + 5 = 0.


The plane ax + by = 0 is rotated about its line of intersection with the plane z = 0 through an angle α. Prove that the equation of the plane in its new position is ax + by `+- (sqrt(a^2 + b^2) tan alpha)z ` = 0


If the directions cosines of a line are k, k, k, then ______.


The plane 2x – 3y + 6z – 11 = 0 makes an angle sin–1(α) with x-axis. The value of α is equal to ______.


The direction cosines of the vector `(2hati + 2hatj - hatk)` are ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×