हिंदी

Find the Image Of: (–5, 0, 3) in the Xz-plane. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the image  of: 

 (–5, 0, 3) in the xz-plane. 

उत्तर

(-5,0,3)

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 28: Introduction to three dimensional coordinate geometry - Exercise 15.1 [पृष्ठ ६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 28 Introduction to three dimensional coordinate geometry
Exercise 15.1 | Q 2.4 | पृष्ठ ६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Three vertices of a parallelogram ABCD are A (3, –1, 2), B (1, 2, –4) and C (–1, 1, 2). Find the coordinates of the fourth vertex.


Name the octants in which the following points lie:

(–5, 4, 3) 


Name the octants in which the following points lie: 

(4, –3, 5)


Name the octants in which the following points lie:

 (2, –5, –7) 


Find the image  of: 

 (–4, 0, 0) in the xy-plane. 


Find the distances of the point P(–4, 3, 5) from the coordinate axes. 


The coordinates of a point are (3, –2, 5). Write down the coordinates of seven points such that the absolute values of their coordinates are the same as those of the coordinates of the given point.


Determine the point on z-axis which is equidistant from the points (1, 5, 7) and (5, 1, –4).


Show that the points A(3, 3, 3), B(0, 6, 3), C(1, 7, 7) and D(4, 4, 7) are the vertices of a square.


Find the locus of P if PA2 + PB2 = 2k2, where A and B are the points (3, 4, 5) and (–1, 3, –7).


Verify the following: 

 (0, 7, –10), (1, 6, –6) and (4, 9, –6) are vertices of an isosceles triangle.


Verify the following: 

 (0, 7, –10), (1, 6, –6) and (4, 9, –6) are vertices of an isosceles triangle. 


Verify the following: 

(0, 7, 10), (–1, 6, 6) and (–4, 9, –6) are vertices of a right-angled triangle.


Show that the plane ax + by cz + d = 0 divides the line joining the points (x1y1z1) and (x2y2z2) in the ratio \[- \frac{a x_1 + b y_1 + c z_1 + d}{a x_2 + b y_2 + c z_2 + d}\]


Write the distance of the point P (2, 3,5) from the xy-plane.


Write the coordinates of the foot of the perpendicular from the point (1, 2, 3) on y-axis.


The coordinates of the foot of the perpendicular drawn from the point P(3, 4, 5) on the yz- plane are


The perpendicular distance of the point P (6, 7, 8) from xy - plane is


If a line makes an angle of 30°, 60°, 90° with the positive direction of x, y, z-axes, respectively, then find its direction cosines.


Find the coordinates of the point where the line through (3, – 4, – 5) and (2, –3, 1) crosses the plane passing through three points (2, 2, 1), (3, 0, 1) and (4, –1, 0)


The coordinates of the foot of the perpendicular drawn from the point (2, 5, 7) on the x-axis are given by ______.


If a line makes angles `pi/2, 3/4 pi` and `pi/4` with x, y, z axis, respectively, then its direction cosines are ______.


Prove that the lines x = py + q, z = ry + s and x = p′y + q′, z = r′y + s′ are perpendicular if pp′ + rr′ + 1 = 0.


Find the angle between the lines whose direction cosines are given by the equations l + m + n = 0, l2 + m2 – n2 = 0


O is the origin and A is (a, b, c). Find the direction cosines of the line OA and the equation of plane through A at right angle to OA.


Two systems of rectangular axis have the same origin. If a plane cuts them at distances a, b, c and a′, b′, c′, respectively, from the origin, prove that

`1/a^2 + 1/b^2 + 1/c^2 = 1/(a"'"^2) + 1/(b"'"^2) + 1/(c"'"^2)`


Find the foot of perpendicular from the point (2,3,–8) to the line `(4 - x)/2 = y/6 = (1 - z)/3`. Also, find the perpendicular distance from the given point to the line.


The direction cosines of the vector `(2hati + 2hatj - hatk)` are ______.


The vector equation of the line through the points (3, 4, –7) and (1, –1, 6) is ______.


The angle between the line `vecr = (5hati - hatj - 4hatk) + lambda(2hati - hatj + hatk)` and the plane `vec.(3hati - 4hatj - hatk)` + 5 = 0 is `sin^-1(5/(2sqrt(91)))`.


The vector equation of the line `(x - 5)/3 = (y + 4)/7 = (z - 6)/2` is `vecr = (5hati - 4hatj + 6hatk) + lambda(3hati + 7hatj - 2hatk)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×