Advertisements
Advertisements
प्रश्न
Verify the following:
(0, 7, 10), (–1, 6, 6) and (–4, 9, –6) are vertices of a right-angled triangle.
उत्तर
Let A(0,7,10) , B( \[-\]1,6,6) and C( \[-\]4,9,6) be the vertices of \[\bigtriangleup ABC\]Then ,
AB = \[\sqrt{\left( - 1 - 0 \right)^2 + \left( 6 - 7 \right)^2 + \left( 6 - 10 \right)^2}\]
\[= \sqrt{\left( - 1 \right)^2 + \left( - 1 \right)^2 + \left( - 4 \right)^2}\]
\[ = \sqrt{1 + 1 + 16}\]
\[ = \sqrt{18}\]
\[ = 3\sqrt{2}\]
BC = \[\sqrt{\left( - 4 + 1 \right)^2 + \left( 9 - 6 \right)^2 + \left( 6 - 6 \right)^2}\]
\[ = \sqrt{9 + 9}\]
\[ = \sqrt{18}\]
\[ = 3\sqrt{2}\]
AC = \[\sqrt{\left( - 4 - 0 \right)^2 + \left( 9 - 7 \right)^2 + \left( 6 - 10 \right)^2}\]
\[ = \sqrt{16 + 4 + 16}\]
\[ = \sqrt{36}\]
\[ = 6\]
\[A C^2\]\[= A B^2 + B C^2\]
Thus, the given points are the vertices of a right-angled triangle.
APPEARS IN
संबंधित प्रश्न
The x-axis and y-axis taken together determine a plane known as_______.
Name the octants in which the following points lie: (5, 2, 3)
Name the octants in which the following points lie:
(7, 4, –3)
Name the octants in which the following points lie:
(–5, –3, –2)
Find the image of:
(–2, 3, 4) in the yz-plane.
Find the image of:
(–5, 0, 3) in the xz-plane.
Determine the points in zx-plane are equidistant from the points A(1, –1, 0), B(2, 1, 2) and C(3, 2, –1).
Find the point on y-axis which is equidistant from the points (3, 1, 2) and (5, 5, 2).
Verify the following:
(0, 7, –10), (1, 6, –6) and (4, 9, –6) are vertices of an isosceles triangle.
Show that the points A(1, 2, 3), B(–1, –2, –1), C(2, 3, 2) and D(4, 7, 6) are the vertices of a parallelogram ABCD, but not a rectangle.
Find the equation of the set of the points P such that its distances from the points A(3, 4, –5) and B(–2, 1, 4) are equal.
Find the ratio in which the sphere x2 + y2 + z2 = 504 divides the line joining the points (12, –4, 8) and (27, –9, 18).
What is the locus of a point for which y = 0, z = 0?
Find the ratio in which the line segment joining the points (2, 4,5) and (3, −5, 4) is divided by the yz-plane.
Find the point on x-axis which is equidistant from the points A (3, 2, 2) and B (5, 5, 4).
The ratio in which the line joining the points (a, b, c) and (–a, –c, –b) is divided by the xy-plane is
Let (3, 4, –1) and (–1, 2, 3) be the end points of a diameter of a sphere. Then, the radius of the sphere is equal to
The perpendicular distance of the point P (6, 7, 8) from xy - plane is
The length of the perpendicular drawn from the point P (3, 4, 5) on y-axis is
The perpendicular distance of the point P(3, 3,4) from the x-axis is
The length of the perpendicular drawn from the point P(a, b, c) from z-axis is
A plane meets the co-ordinates axis in A, B, C such that the centroid of the ∆ABC is the point (α, β, γ). Show that the equation of the plane is `x/alpha + y/beta + z/γ` = 3
A line makes equal angles with co-ordinate axis. Direction cosines of this line are ______.
If a line makes angles `pi/2, 3/4 pi` and `pi/4` with x, y, z axis, respectively, then its direction cosines are ______.
If the line drawn from the point (–2, – 1, – 3) meets a plane at right angle at the point (1, – 3, 3), find the equation of the plane
Find the equations of the two lines through the origin which intersect the line `(x - 3)/2 = (y - 3)/1 = z/1` at angles of `pi/3` each.
Find the equation of the plane through the points (2, 1, –1) and (–1, 3, 4), and perpendicular to the plane x – 2y + 4z = 10.
The plane ax + by = 0 is rotated about its line of intersection with the plane z = 0 through an angle α. Prove that the equation of the plane in its new position is ax + by `+- (sqrt(a^2 + b^2) tan alpha)z ` = 0
Show that the straight lines whose direction cosines are given by 2l + 2m – n = 0 and mn + nl + lm = 0 are at right angles.
The area of the quadrilateral ABCD, where A(0, 4, 1), B(2, 3, –1), C(4, 5, 0) and D(2, 6, 2), is equal to ______.
The plane 2x – 3y + 6z – 11 = 0 makes an angle sin–1(α) with x-axis. The value of α is equal to ______.
The intercepts made by the plane 2x – 3y + 5z +4 = 0 on the co-ordinate axis are `-2, 4/3, - 4/5`.
The line `vecr = 2hati - 3hatj - hatk + lambda(hati - hatj + 2hatk)` lies in the plane `vecr.(3hati + hatj - hatk) + 2` = 0.
The vector equation of the line `(x - 5)/3 = (y + 4)/7 = (z - 6)/2` is `vecr = (5hati - 4hatj + 6hatk) + lambda(3hati + 7hatj - 2hatk)`.