Advertisements
Advertisements
प्रश्न
Show that the points A(1, 2, 3), B(–1, –2, –1), C(2, 3, 2) and D(4, 7, 6) are the vertices of a parallelogram ABCD, but not a rectangle.
उत्तर
To show that ABCD is a parallelogram, we need to show that its two opposite sides are equal.
\[AB = \sqrt{\left( - 1 - 1 \right)^2 + \left( - 2 - 2 \right)^2 + \left( - 1 - 3 \right)^2}\]
\[ = \sqrt{4 + 16 + 16}\]
\[ = \sqrt{36}\]
\[ = 6\]
\[BC = \sqrt{\left( 2 + 1 \right)^2 + \left( 3 + 2 \right)^2 + \left( 2 + 1 \right)^2}\]
\[ = \sqrt{9 + 25 + 9}\]
\[ = \sqrt{43}\]
\[CD = \sqrt{\left( 4 - 2 \right)^2 + \left( 7 - 3 \right)^2 + \left( 6 - 2 \right)^2}\]
\[ = \sqrt{4 + 16 + 16}\]
\[ = \sqrt{36}\]
\[ = 6\]
\[DA = \sqrt{\left( 1 - 4 \right)^2 + \left( 2 - 7 \right)^2 + \left( 3 - 6 \right)^2}\]
\[ = \sqrt{9 + 25 + 9}\]
\[ = \sqrt{43}\]
\[AB = CD and BC = DA\]
\[\text{ Since, opposite pairs of sides are equal } . \]
\[ \therefore \text{ ABCD is a parallelogram }\]
\[AC = \sqrt{\left( 2 - 1 \right)^2 + \left( 3 - 2 \right)^2 + \left( 2 - 3 \right)^2}\]
\[ = \sqrt{1 + 1 + 1}\]
\[ = \sqrt{3}\]
\[BD = \sqrt{\left( 4 + 1 \right)^2 + \left( 7 + 2 \right)^2 + \left( 6 + 1 \right)^2}\]
\[ = \sqrt{25 + 81 + 49}\]
\[ = \sqrt{155}\]
\[\text{ Since }, AC \neq BD\]
Thus, ABCD is not a rectangle.
APPEARS IN
संबंधित प्रश्न
The x-axis and y-axis taken together determine a plane known as_______.
Coordinate planes divide the space into ______ octants.
Name the octants in which the following points lie:
(7, 4, –3)
Find the image of:
(–2, 3, 4) in the yz-plane.
Prove that the triangle formed by joining the three points whose coordinates are (1, 2, 3), (2, 3, 1) and (3, 1, 2) is an equilateral triangle.
Verify the following:
(0, 7, 10), (–1, 6, 6) and (–4, 9, –6) are vertices of a right-angled triangle.
Verify the following:
(–1, 2, 1), (1, –2, 5), (4, –7, 8) and (2, –3, 4) are vertices of a parallelogram.
Find the locus of the points which are equidistant from the points (1, 2, 3) and (3, 2, –1).
Find the equation of the set of the points P such that its distances from the points A(3, 4, –5) and B(–2, 1, 4) are equal.
Show that the plane ax + by + cz + d = 0 divides the line joining the points (x1, y1, z1) and (x2, y2, z2) in the ratio \[- \frac{a x_1 + b y_1 + c z_1 + d}{a x_2 + b y_2 + c z_2 + d}\]
The coordinates of the mid-points of sides AB, BC and CA of △ABC are D(1, 2, −3), E(3, 0,1) and F(−1, 1, −4) respectively. Write the coordinates of its centroid.
Find the point on x-axis which is equidistant from the points A (3, 2, 2) and B (5, 5, 4).
The ratio in which the line joining (2, 4, 5) and (3, 5, –9) is divided by the yz-plane is
The coordinates of the foot of the perpendicular drawn from the point P(3, 4, 5) on the yz- plane are
The perpendicular distance of the point P (6, 7, 8) from xy - plane is
The length of the perpendicular drawn from the point P (3, 4, 5) on y-axis is
Find the co-ordinates of the foot of perpendicular drawn from the point A(1, 8, 4) to the line joining the points B(0, –1, 3) and C(2, –3, –1).
Find the image of the point having position vector `hati + 3hatj + 4hatk` in the plane `hatr * (2hati - hatj + hatk)` + 3 = 0.
Find the equation of a plane which bisects perpendicularly the line joining the points A(2, 3, 4) and B(4, 5, 8) at right angles.
Find the equation of the plane through the points (2, 1, 0), (3, –2, –2) and (3, 1, 7).
Find the equations of the two lines through the origin which intersect the line `(x - 3)/2 = (y - 3)/1 = z/1` at angles of `pi/3` each.
Find the angle between the lines whose direction cosines are given by the equations l + m + n = 0, l2 + m2 – n2 = 0
O is the origin and A is (a, b, c). Find the direction cosines of the line OA and the equation of plane through A at right angle to OA.
Find the equations of the line passing through the point (3,0,1) and parallel to the planes x + 2y = 0 and 3y – z = 0.
Find the equation of the plane which is perpendicular to the plane 5x + 3y + 6z + 8 = 0 and which contains the line of intersection of the planes x + 2y + 3z – 4 = 0 and 2x + y – z + 5 = 0.
Show that the points `(hati - hatj + 3hatk)` and `3(hati + hatj + hatk)` are equidistant from the plane `vecr * (5hati + 2hatj - 7hatk) + 9` = 0 and lies on opposite side of it.
If the directions cosines of a line are k, k, k, then ______.
The sine of the angle between the straight line `(x - 2)/3 = (y - 3)/4 = (z - 4)/5` and the plane 2x – 2y + z = 5 is ______.
The locus represented by xy + yz = 0 is ______.
The vector equation of the line `(x - 5)/3 = (y + 4)/7 = (z - 6)/2` is ______.
The vector equation of the line through the points (3, 4, –7) and (1, –1, 6) is ______.
The unit vector normal to the plane x + 2y +3z – 6 = 0 is `1/sqrt(14)hati + 2/sqrt(14)hatj + 3/sqrt(14)hatk`.
The intercepts made by the plane 2x – 3y + 5z +4 = 0 on the co-ordinate axis are `-2, 4/3, - 4/5`.
The vector equation of the line `(x - 5)/3 = (y + 4)/7 = (z - 6)/2` is `vecr = (5hati - 4hatj + 6hatk) + lambda(3hati + 7hatj - 2hatk)`.