हिंदी

The sine of the angle between the straight line x-23=y-34=z-45 and the plane 2x – 2y + z = 5 is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The sine of the angle between the straight line `(x - 2)/3 = (y - 3)/4 = (z - 4)/5` and the plane 2x – 2y + z = 5 is ______.

विकल्प

  • `10/(6sqrt(5))`

  • `4/(5sqrt(2))`

  • `(2sqrt(3))/5`

  • `sqrt(2)/10`

MCQ
रिक्त स्थान भरें

उत्तर

The sine of the angle between the straight line `(x - 2)/3 = (y - 3)/4 = (z - 4)/5` and the plane 2x – 2y + z = 5 is `sqrt(2)/10`.

Explanation:

From equation of line we find the direction vector

`vecs` = (3, 4, 5)(l, m, n)

From equation of plane we find the normal vector

`vecq` = (2, −2, 1)(A, B, C)

Using formula,

sin θ = `|Al + Bm + Cn|/(sqrt(A^2 + B^2 + C^2 * sqrt(1^2 + m^2 + n^2)`

sin θ = `|6 - 8 + 4|/(sqrt(4 + 4 + 1) * sqrt(9 + 16 + 25)`

sin θ = `3/(3.5sqrt(2))`

sin θ = `sqrt(2)/10`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Introduction to Three Dimensional Geometry - Exercise [पृष्ठ २३८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 12 Introduction to Three Dimensional Geometry
Exercise | Q 32 | पृष्ठ २३८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Name the octants in which the following points lie: 

(4, –3, 5)


A cube of side 5 has one vertex at the point (1, 0, –1), and the three edges from this vertex are, respectively, parallel to the negative x and y axes and positive z-axis. Find the coordinates of the other vertices of the cube.


Determine the point on z-axis which is equidistant from the points (1, 5, 7) and (5, 1, –4).


Find the point on y-axis which is equidistant from the points (3, 1, 2) and (5, 5, 2).


Prove that the point A(1, 3, 0), B(–5, 5, 2), C(–9, –1, 2) and D(–3, –3, 0) taken in order are the vertices of a parallelogram. Also, show that ABCD is not a rectangle.


Show that the points (a, b, c), (b, c, a) and (c, a, b) are the vertices of an equilateral triangle. 


Verify the following: 

 (0, 7, –10), (1, 6, –6) and (4, 9, –6) are vertices of an isosceles triangle.


Verify the following: 

 (0, 7, –10), (1, 6, –6) and (4, 9, –6) are vertices of an isosceles triangle. 


Find the locus of the points which are equidistant from the points (1, 2, 3) and (3, 2, –1).


Find the equation of the set of the points P such that its distances from the points A(3, 4, –5) and B(–2, 1, 4) are equal.


Find the ratio in which the sphere x2 + y2 z2 = 504 divides the line joining the points (12, –4, 8) and (27, –9, 18).


Write the distance of the point P(3, 4, 5) from z-axis.


Write the coordinates of the foot of the perpendicular from the point (1, 2, 3) on y-axis.


Find the ratio in which the line segment joining the points (2, 4,5) and (3, −5, 4) is divided by the yz-plane.


The ratio in which the line joining (2, 4, 5) and (3, 5, –9) is divided by the yz-plane is


XOZ-plane divides the join of (2, 3, 1) and (6, 7, 1) in the ratio


The length of the perpendicular drawn from the point P (3, 4, 5) on y-axis is 


Find the direction cosines of the line passing through the points P(2, 3, 5) and Q(–1, 2, 4).


Find the coordinates of the point where the line through (3, – 4, – 5) and (2, –3, 1) crosses the plane passing through three points (2, 2, 1), (3, 0, 1) and (4, –1, 0)


Find the co-ordinates of the foot of perpendicular drawn from the point A(1, 8, 4) to the line joining the points B(0, –1, 3) and C(2, –3, –1).


Prove that the lines x = py + q, z = ry + s and x = p′y + q′, z = r′y + s′ are perpendicular if pp′ + rr′ + 1 = 0.


If the line drawn from the point (–2, – 1, – 3) meets a plane at right angle at the point (1, – 3, 3), find the equation of the plane


Find the foot of perpendicular from the point (2,3,–8) to the line `(4 - x)/2 = y/6 = (1 - z)/3`. Also, find the perpendicular distance from the given point to the line.


Find the equations of the line passing through the point (3,0,1) and parallel to the planes x + 2y = 0 and 3y – z = 0.


The locus represented by xy + yz = 0 is ______.


The direction cosines of the vector `(2hati + 2hatj - hatk)` are ______.


The vector equation of the line through the points (3, 4, –7) and (1, –1, 6) is ______.


The intercepts made by the plane 2x – 3y + 5z +4 = 0 on the co-ordinate axis are `-2, 4/3, - 4/5`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×