हिंदी

The intercepts made by the plane 2x – 3y + 5z +4 = 0 on the co-ordinate axis are -2,43,-45. - Mathematics

Advertisements
Advertisements

प्रश्न

The intercepts made by the plane 2x – 3y + 5z +4 = 0 on the co-ordinate axis are `-2, 4/3, - 4/5`.

विकल्प

  • True

  • False

MCQ
सत्य या असत्य

उत्तर

This statement is True.

Explanation:

First let’s convert the given equation to intercept form i.e. `x/a + y/b + z/c` = 1

Where, a, b and c are x, y and z intercepts respectively!

Given, 2x – 3y + 5z + 4 = 0

⇒ – 2x + 3y – 5z = 4

Dividing by 4 both side

⇒ `X/(-2) + Y/(4/3) + Z/(4/(-5))` = 1

On comparing, we have intercepts as `-2, 4/3, -4/5`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Introduction to Three Dimensional Geometry - Exercise [पृष्ठ २३९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 12 Introduction to Three Dimensional Geometry
Exercise | Q 43 | पृष्ठ २३९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Name the octants in which the following points lie: (5, 2, 3)


Name the octants in which the following points lie: 

(–5, –4, 7) 


Find the image  of: 

 (–5, 4, –3) in the xz-plane. 


Find the image  of: 

 (–5, 0, 3) in the xz-plane. 


Planes are drawn through the points (5, 0, 2) and (3, –2, 5) parallel to the coordinate planes. Find the lengths of the edges of the rectangular parallelepiped so formed. 


Determine the points in zx-plane are equidistant from the points A(1, –1, 0), B(2, 1, 2) and C(3, 2, –1). 


Determine the point on z-axis which is equidistant from the points (1, 5, 7) and (5, 1, –4).


Prove that the triangle formed by joining the three points whose coordinates are (1, 2, 3), (2, 3, 1) and (3, 1, 2) is an equilateral triangle.


Show that the points A(3, 3, 3), B(0, 6, 3), C(1, 7, 7) and D(4, 4, 7) are the vertices of a square.


Find the coordinates of the point which is equidistant  from the four points O(0, 0, 0), A(2, 0, 0), B(0, 3, 0) and C(0, 0, 8).


Verify the following: 

 (0, 7, –10), (1, 6, –6) and (4, 9, –6) are vertices of an isosceles triangle. 


Verify the following: 

(0, 7, 10), (–1, 6, 6) and (–4, 9, –6) are vertices of a right-angled triangle.


Verify the following: 

 (–1, 2, 1), (1, –2, 5), (4, –7, 8) and (2, –3, 4) are vertices of a parallelogram.


Find the locus of the points which are equidistant from the points (1, 2, 3) and (3, 2, –1).


Show that the plane ax + by cz + d = 0 divides the line joining the points (x1y1z1) and (x2y2z2) in the ratio \[- \frac{a x_1 + b y_1 + c z_1 + d}{a x_2 + b y_2 + c z_2 + d}\]


Write the distance of the point P(3, 4, 5) from z-axis.


Write the coordinates of the foot of the perpendicular from the point (1, 2, 3) on y-axis.


Find the point on y-axis which is at a distance of  \[\sqrt{10}\] units from the point (1, 2, 3).


The coordinates of the foot of the perpendicular drawn from the point P(3, 4, 5) on the yz- plane are


If the direction ratios of a line are 1, 1, 2, find the direction cosines of the line.


Find the direction cosines of the line passing through the points P(2, 3, 5) and Q(–1, 2, 4).


Find the co-ordinates of the foot of perpendicular drawn from the point A(1, 8, 4) to the line joining the points B(0, –1, 3) and C(2, –3, –1).


Find the image of the point (1, 6, 3) in the line `x/1 = (y - 1)/2 = (z - 2)/3`


Find the equations of the line passing through the point (3,0,1) and parallel to the planes x + 2y = 0 and 3y – z = 0.


Find the equation of the plane which is perpendicular to the plane 5x + 3y + 6z + 8 = 0 and which contains the line of intersection of the planes x + 2y + 3z – 4 = 0 and 2x + y – z + 5 = 0.


Show that the straight lines whose direction cosines are given by 2l + 2m – n = 0 and mn + nl + lm = 0 are at right angles.


If the directions cosines of a line are k, k, k, then ______.


The vector equation of the line `(x - 5)/3 = (y + 4)/7 = (z - 6)/2` is ______.


The vector equation of the line `(x - 5)/3 = (y + 4)/7 = (z - 6)/2` is `vecr = (5hati - 4hatj + 6hatk) + lambda(3hati + 7hatj - 2hatk)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×