Advertisements
Advertisements
प्रश्न
The vector equation of the line through the points (3, 4, –7) and (1, –1, 6) is ______.
उत्तर
The vector equation of the line through the points (3, 4, –7) and (1, –1, 6) is `3hati + 4hatj - 7hatk + lambda|-2hati - 5hatj + 13hatk|`.
Explanation:
Given points are A(3, 4, –7), B(1, –1, 6)
`vecA = 3hati + 4hatj - 7hatk`
`vecB = hati - hatj + 6hatk`
∴ Vector equation
`vecr = (3hati + 4hatj - 7hatk) + lambda[hati - hatj + 6hatk - (3hati + 4hatj - 7hatk)]`
= `3hati + 4hatj - 7hatk + lambda[-2hati - 5hatj + 13hatk]`
APPEARS IN
संबंधित प्रश्न
The x-axis and y-axis taken together determine a plane known as_______.
Three vertices of a parallelogram ABCD are A (3, –1, 2), B (1, 2, –4) and C (–1, 1, 2). Find the coordinates of the fourth vertex.
Name the octants in which the following points lie: (5, 2, 3)
Name the octants in which the following points lie:
(–5, 4, 3)
Find the image of:
(5, 2, –7) in the xy-plane.
Find the image of:
(–5, 0, 3) in the xz-plane.
Planes are drawn parallel to the coordinate planes through the points (3, 0, –1) and (–2, 5, 4). Find the lengths of the edges of the parallelepiped so formed.
Find the distances of the point P(–4, 3, 5) from the coordinate axes.
The coordinates of a point are (3, –2, 5). Write down the coordinates of seven points such that the absolute values of their coordinates are the same as those of the coordinates of the given point.
Find the points on z-axis which are at a distance \[\sqrt{21}\]from the point (1, 2, 3).
Are the points A(3, 6, 9), B(10, 20, 30) and C(25, –41, 5), the vertices of a right-angled triangle?
Verify the following:
(0, 7, –10), (1, 6, –6) and (4, 9, –6) are vertices of an isosceles triangle.
The ratio in which the line joining (2, 4, 5) and (3, 5, –9) is divided by the yz-plane is
The ratio in which the line joining the points (a, b, c) and (–a, –c, –b) is divided by the xy-plane is
What is the locus of a point for which y = 0, z = 0?
The coordinates of the foot of the perpendicular drawn from the point P(3, 4, 5) on the yz- plane are
The perpendicular distance of the point P(3, 3,4) from the x-axis is
The length of the perpendicular drawn from the point P(a, b, c) from z-axis is
If the direction ratios of a line are 1, 1, 2, find the direction cosines of the line.
The x-coordinate of a point on the line joining the points Q(2, 2, 1) and R(5, 1, –2) is 4. Find its z-coordinate.
Find the image of the point having position vector `hati + 3hatj + 4hatk` in the plane `hatr * (2hati - hatj + hatk)` + 3 = 0.
Find the equation of the plane through the points (2, 1, 0), (3, –2, –2) and (3, 1, 7).
The plane ax + by = 0 is rotated about its line of intersection with the plane z = 0 through an angle α. Prove that the equation of the plane in its new position is ax + by `+- (sqrt(a^2 + b^2) tan alpha)z ` = 0
If l1, m1, n1 ; l2, m2, n2 ; l3, m3, n3 are the direction cosines of three mutually perpendicular lines, prove that the line whose direction cosines are proportional to l1 + l2 + l3, m1 + m2 + m3, n1 + n2 + n3 makes equal angles with them.
The area of the quadrilateral ABCD, where A(0, 4, 1), B(2, 3, –1), C(4, 5, 0) and D(2, 6, 2), is equal to ______.
The direction cosines of the vector `(2hati + 2hatj - hatk)` are ______.
The cartesian equation of the plane `vecr * (hati + hatj - hatk)` is ______.
If the foot of perpendicular drawn from the origin to a plane is (5, – 3, – 2), then the equation of plane is `vecr.(5hati - 3hatj - 2hatk)` = 38.