हिंदी

Find the equations of the two lines through the origin which intersect the line x-32=y-31=z1 at angles of π3 each. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equations of the two lines through the origin which intersect the line `(x - 3)/2 = (y - 3)/1 = z/1` at angles of `pi/3` each.

योग

उत्तर

Given, equation of line:

`(x - 3)/2 = (y - 3)/1 = z/1` = x

∴ x = 2r + 3

y = r + 3

z = r

So, (2r + 3, r + 3, r) is the direction ratio of two lines that intersect at `pi/3` with given line and passes through (0,0).

∴ Angle between the line and unknown lines is `pi/3`.

Direction ratio of line is (2,1,1)

`|a| = sqrt(2^2 + 1^2 + 1^2) = sqrt(6)`

`|b| = sqrt((2r + 3)^2 + (r + 3)^2 + r^2)`

= `sqrt(6r^2 + 18 + 18)`

`cos  pi/3 = (a*b)/(|a||b|)`

= `1/2 = (4r + 6 + r + 3 + r)/(sqrt(6)sqrt(6r^2 + 18r + 18)`

= `1/2 (6r + 9)/(6sqrt(r^2 + 3r + 3)`

∴ `sqrt(r^2 + 3r + 3) = 3r + 3`

= `r^2 + 3r + 3`

= `4r^2 + 9 + 12r` = 0

= `3r^2 + 6 + 9r` = 0

= `r^2 + 3r + 2`

∴ `(r + 1)(r + 2)` = 0

So, direction ratios are (−1, 1, −2) and (1, 2, −1)

Lines are `(x - 0)/(-1) = (y - 0)/1 = (z - n)/(-2)` and `(x - 0)/1 = (y - 0)/2 = (z - 0)/(-1)`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Introduction to Three Dimensional Geometry - Exercise [पृष्ठ २३६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 12 Introduction to Three Dimensional Geometry
Exercise | Q 11 | पृष्ठ २३६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Name the octants in which the following points lie:

(–5, 4, 3) 


Name the octants in which the following points lie: 

 (7, 4, –3)


Name the octants in which the following points lie:

 (2, –5, –7) 


Find the image  of: 

 (–5, 0, 3) in the xz-plane. 


Determine the points in zx-plane are equidistant from the points A(1, –1, 0), B(2, 1, 2) and C(3, 2, –1). 


Determine the point on z-axis which is equidistant from the points (1, 5, 7) and (5, 1, –4).


Find the coordinates of the point which is equidistant  from the four points O(0, 0, 0), A(2, 0, 0), B(0, 3, 0) and C(0, 0, 8).


If A(–2, 2, 3) and B(13, –3, 13) are two points.
Find the locus of a point P which moves in such a way the 3PA = 2PB.


Are the points A(3, 6, 9), B(10, 20, 30) and C(25, –41, 5), the vertices of a right-angled triangle?


Verify the following: 

(0, 7, 10), (–1, 6, 6) and (–4, 9, –6) are vertices of a right-angled triangle.


Verify the following: 

 (–1, 2, 1), (1, –2, 5), (4, –7, 8) and (2, –3, 4) are vertices of a parallelogram.


Find the locus of the points which are equidistant from the points (1, 2, 3) and (3, 2, –1).


Find the locus of the point, the sum of whose distances from the points A(4, 0, 0) and B(–4, 0, 0) is equal to 10.


Find the ratio in which the sphere x2 + y2 z2 = 504 divides the line joining the points (12, –4, 8) and (27, –9, 18).


The coordinates of the mid-points of sides AB, BC and CA of  △ABC are D(1, 2, −3), E(3, 0,1) and F(−1, 1, −4) respectively. Write the coordinates of its centroid.


Find the point on x-axis which is equidistant from the points A (3, 2, 2) and B (5, 5, 4).


The perpendicular distance of the point P (6, 7, 8) from xy - plane is


Find the direction cosines of the line passing through the points P(2, 3, 5) and Q(–1, 2, 4).


The x-coordinate of a point on the line joining the points Q(2, 2, 1) and R(5, 1, –2) is 4. Find its z-coordinate.


A plane meets the co-ordinates axis in A, B, C such that the centroid of the ∆ABC is the point (α, β, γ). Show that the equation of the plane is `x/alpha + y/beta + z/γ` = 3


If α, β, γ are the angles that a line makes with the positive direction of x, y, z axis, respectively, then the direction cosines of the line are ______.


Find the equation of a plane which bisects perpendicularly the line joining the points A(2, 3, 4) and B(4, 5, 8) at right angles.


Show that the points `(hati - hatj + 3hatk)` and `3(hati + hatj + hatk)` are equidistant from the plane `vecr * (5hati + 2hatj - 7hatk) + 9` = 0 and lies on opposite side of it.


If the directions cosines of a line are k, k, k, then ______.


The vector equation of the line through the points (3, 4, –7) and (1, –1, 6) is ______.


The cartesian equation of the plane `vecr * (hati + hatj - hatk)` is ______.


The intercepts made by the plane 2x – 3y + 5z +4 = 0 on the co-ordinate axis are `-2, 4/3, - 4/5`.


The angle between the line `vecr = (5hati - hatj - 4hatk) + lambda(2hati - hatj + hatk)` and the plane `vec.(3hati - 4hatj - hatk)` + 5 = 0 is `sin^-1(5/(2sqrt(91)))`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×