Advertisements
Advertisements
Question
Find the equations of the two lines through the origin which intersect the line `(x - 3)/2 = (y - 3)/1 = z/1` at angles of `pi/3` each.
Solution
Given, equation of line:
`(x - 3)/2 = (y - 3)/1 = z/1` = x
∴ x = 2r + 3
y = r + 3
z = r
So, (2r + 3, r + 3, r) is the direction ratio of two lines that intersect at `pi/3` with given line and passes through (0,0).
∴ Angle between the line and unknown lines is `pi/3`.
Direction ratio of line is (2,1,1)
`|a| = sqrt(2^2 + 1^2 + 1^2) = sqrt(6)`
`|b| = sqrt((2r + 3)^2 + (r + 3)^2 + r^2)`
= `sqrt(6r^2 + 18 + 18)`
`cos pi/3 = (a*b)/(|a||b|)`
= `1/2 = (4r + 6 + r + 3 + r)/(sqrt(6)sqrt(6r^2 + 18r + 18)`
= `1/2 (6r + 9)/(6sqrt(r^2 + 3r + 3)`
∴ `sqrt(r^2 + 3r + 3) = 3r + 3`
= `r^2 + 3r + 3`
= `4r^2 + 9 + 12r` = 0
= `3r^2 + 6 + 9r` = 0
= `r^2 + 3r + 2`
∴ `(r + 1)(r + 2)` = 0
So, direction ratios are (−1, 1, −2) and (1, 2, −1)
Lines are `(x - 0)/(-1) = (y - 0)/1 = (z - n)/(-2)` and `(x - 0)/1 = (y - 0)/2 = (z - 0)/(-1)`.
APPEARS IN
RELATED QUESTIONS
Coordinate planes divide the space into ______ octants.
Three vertices of a parallelogram ABCD are A (3, –1, 2), B (1, 2, –4) and C (–1, 1, 2). Find the coordinates of the fourth vertex.
Name the octants in which the following points lie:
(–5, 4, 3)
Name the octants in which the following points lie:
(4, –3, 5)
Find the points on z-axis which are at a distance \[\sqrt{21}\]from the point (1, 2, 3).
Show that the points A(3, 3, 3), B(0, 6, 3), C(1, 7, 7) and D(4, 4, 7) are the vertices of a square.
Prove that the point A(1, 3, 0), B(–5, 5, 2), C(–9, –1, 2) and D(–3, –3, 0) taken in order are the vertices of a parallelogram. Also, show that ABCD is not a rectangle.
Show that the points (a, b, c), (b, c, a) and (c, a, b) are the vertices of an equilateral triangle.
Verify the following:
(0, 7, 10), (–1, 6, 6) and (–4, 9, –6) are vertices of a right-angled triangle.
Verify the following:
(–1, 2, 1), (1, –2, 5), (4, –7, 8) and (2, –3, 4) are vertices of a parallelogram.
Show that the points A(1, 2, 3), B(–1, –2, –1), C(2, 3, 2) and D(4, 7, 6) are the vertices of a parallelogram ABCD, but not a rectangle.
Write the length of the perpendicular drawn from the point P(3, 5, 12) on x-axis.
What is the locus of a point for which y = 0, z = 0?
Find the ratio in which the line segment joining the points (2, 4,5) and (3, −5, 4) is divided by the yz-plane.
The perpendicular distance of the point P(3, 3,4) from the x-axis is
The length of the perpendicular drawn from the point P(a, b, c) from z-axis is
The x-coordinate of a point on the line joining the points Q(2, 2, 1) and R(5, 1, –2) is 4. Find its z-coordinate.
Find the coordinates of the point where the line through (3, – 4, – 5) and (2, –3, 1) crosses the plane passing through three points (2, 2, 1), (3, 0, 1) and (4, –1, 0)
Find the image of the point (1, 6, 3) in the line `x/1 = (y - 1)/2 = (z - 2)/3`
Find the image of the point having position vector `hati + 3hatj + 4hatk` in the plane `hatr * (2hati - hatj + hatk)` + 3 = 0.
The plane ax + by = 0 is rotated about its line of intersection with the plane z = 0 through an angle α. Prove that the equation of the plane in its new position is ax + by `+- (sqrt(a^2 + b^2) tan alpha)z ` = 0
Show that the straight lines whose direction cosines are given by 2l + 2m – n = 0 and mn + nl + lm = 0 are at right angles.
If the directions cosines of a line are k, k, k, then ______.
The sine of the angle between the straight line `(x - 2)/3 = (y - 3)/4 = (z - 4)/5` and the plane 2x – 2y + z = 5 is ______.
The plane 2x – 3y + 6z – 11 = 0 makes an angle sin–1(α) with x-axis. The value of α is equal to ______.
The intercepts made by the plane 2x – 3y + 5z +4 = 0 on the co-ordinate axis are `-2, 4/3, - 4/5`.
If the foot of perpendicular drawn from the origin to a plane is (5, – 3, – 2), then the equation of plane is `vecr.(5hati - 3hatj - 2hatk)` = 38.