English

Prove that the Point A(1, 3, 0), B(–5, 5, 2), C(–9, –1, 2) and D(–3, –3, 0) Taken in Order Are the Vertices of a Parallelogram. Also, Show that Abcd is Not a - Mathematics

Advertisements
Advertisements

Question

Prove that the point A(1, 3, 0), B(–5, 5, 2), C(–9, –1, 2) and D(–3, –3, 0) taken in order are the vertices of a parallelogram. Also, show that ABCD is not a rectangle.

Solution

Let A(1,3,0),B( \[-\]5,5,2), C(\[-\]9,\[-\]1,2) and D(\[-\]3,\[-\]3,0) be the coordinates of quadrilateral \[\square ABCD\]

\[AB = \sqrt{\left( - 5 - 1 \right)^2 + \left( 5 - 3 \right)^2 + \left( 2 - 0 \right)^2}\]
\[ = \sqrt{36 + 4 + 4}\]
\[ = \sqrt{44}\]
\[BC = \sqrt{\left( - 9 + 5 \right)^2 + \left( - 1 - 5 \right)^2 + \left( 2 - 2 \right)^2}\]
\[ = \sqrt{16 + 36 + 0}\]
\[ = \sqrt{52} \]
\[CD = \sqrt{\left( - 3 + 9 \right)^2 + \left( - 3 + 1 \right)^2 + \left( 0 - 2 \right)^2}\]
\[ = \sqrt{36 + 4 + 4}\]
\[ = \sqrt{44}\]
\[DA = \sqrt{\left( 1 + 3 \right)^2 + \left( 3 + 3 \right)^2 + \left( 0 - 0 \right)^2}\]
\[ = \sqrt{16 + 36 + 0}\]
\[ = \sqrt{52}\]
Here, we see that AB = CD& BC = DA

 Since, opposite pair of sides are equal .
Therefore, 

\[\square ABCD\] is a parallelogram .

\[AC = \sqrt{\left( - 9 - 1 \right)^2 + \left( - 1 - 3 \right)^2 + \left( 2 - 0 \right)^2}\]
\[ = \sqrt{\left( - 10 \right)^2 + \left( - 4 \right)^2 + \left( 2 \right)^2}\]
\[ = \sqrt{100 + 16 + 4}\]
\[ = \sqrt{120}\],m

\[BD = \sqrt{\left( - 3 + 5 \right)^2 + \left( - 3 - 5 \right)^2 + \left( 0 - 2 \right)^2}\]
\[ = \sqrt{\left( 2 \right)^2 + \left( - 8 \right)^2 + \left( - 2 \right)^2}\]
\[ = \sqrt{4 + 64 + 4}\]
\[ = \sqrt{72}\]

\[\therefore AC \neq BD\]
∴ ABCD is not a rectangle.

shaalaa.com
  Is there an error in this question or solution?
Chapter 28: Introduction to three dimensional coordinate geometry - Exercise 28.2 [Page 10]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 28 Introduction to three dimensional coordinate geometry
Exercise 28.2 | Q 11 | Page 10

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Name the octants in which the following points lie:

(1, 2, 3), (4, –2, 3), (4, –2, –5), (4, 2, –5), (–4, 2, –5), (–4, 2, 5),

(–3, –1, 6), (2, –4, –7).


Three vertices of a parallelogram ABCD are A (3, –1, 2), B (1, 2, –4) and C (–1, 1, 2). Find the coordinates of the fourth vertex.


Name the octants in which the following points lie: 

 (7, 4, –3)


Name the octants in which the following points lie: 

(–5, –3, –2) 


Name the octants in which the following points lie:

 (2, –5, –7) 


Find the image  of: 

 (–5, 0, 3) in the xz-plane. 


Find the image  of: 

 (–4, 0, 0) in the xy-plane. 


Determine the point on z-axis which is equidistant from the points (1, 5, 7) and (5, 1, –4).


Show that the points (a, b, c), (b, c, a) and (c, a, b) are the vertices of an equilateral triangle. 


Are the points A(3, 6, 9), B(10, 20, 30) and C(25, –41, 5), the vertices of a right-angled triangle?


Verify the following: 

 (0, 7, –10), (1, 6, –6) and (4, 9, –6) are vertices of an isosceles triangle.


Verify the following: 

(0, 7, 10), (–1, 6, 6) and (–4, 9, –6) are vertices of a right-angled triangle.


Write the distance of the point P (2, 3,5) from the xy-plane.


What is the locus of a point for which y = 0, z = 0?


The ratio in which the line joining (2, 4, 5) and (3, 5, –9) is divided by the yz-plane is


XOZ-plane divides the join of (2, 3, 1) and (6, 7, 1) in the ratio


The perpendicular distance of the point P(3, 3,4) from the x-axis is 


Find the coordinates of the point where the line through (3, – 4, – 5) and (2, –3, 1) crosses the plane passing through three points (2, 2, 1), (3, 0, 1) and (4, –1, 0)


The coordinates of the foot of the perpendicular drawn from the point (2, 5, 7) on the x-axis are given by ______.


A line makes equal angles with co-ordinate axis. Direction cosines of this line are ______.


If a line makes angles α, β, γ with the positive directions of the coordinate axes, then the value of sin2α + sin2β + sin2γ is ______.


If a line makes an angle of `pi/4` with each of y and z axis, then the angle which it makes with x-axis is ______.


Find the equation of the plane through the points (2, 1, 0), (3, –2, –2) and (3, 1, 7).


Find the foot of perpendicular from the point (2,3,–8) to the line `(4 - x)/2 = y/6 = (1 - z)/3`. Also, find the perpendicular distance from the given point to the line.


Find the length and the foot of perpendicular from the point `(1, 3/2, 2)` to the plane 2x – 2y + 4z + 5 = 0.


Find the equations of the line passing through the point (3,0,1) and parallel to the planes x + 2y = 0 and 3y – z = 0.


Find the equation of the plane through the points (2, 1, –1) and (–1, 3, 4), and perpendicular to the plane x – 2y + 4z = 10.


Show that the points `(hati - hatj + 3hatk)` and `3(hati + hatj + hatk)` are equidistant from the plane `vecr * (5hati + 2hatj - 7hatk) + 9` = 0 and lies on opposite side of it.


If l1, m1, n1 ; l2, m2, n2 ; l3, m3, n3 are the direction cosines of three mutually perpendicular lines, prove that the line whose direction cosines are proportional to l1 + l2 + l3, m1 + m2 + m3, n1 + n2 + n3 makes equal angles with them.


The plane 2x – 3y + 6z – 11 = 0 makes an angle sin–1(α) with x-axis. The value of α is equal to ______.


The vector equation of the line `(x - 5)/3 = (y + 4)/7 = (z - 6)/2` is ______.


The cartesian equation of the plane `vecr * (hati + hatj - hatk)` is ______.


The vector equation of the line `(x - 5)/3 = (y + 4)/7 = (z - 6)/2` is `vecr = (5hati - 4hatj + 6hatk) + lambda(3hati + 7hatj - 2hatk)`.


If the foot of perpendicular drawn from the origin to a plane is (5, – 3, – 2), then the equation of plane is `vecr.(5hati - 3hatj - 2hatk)` = 38.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×