Advertisements
Advertisements
Question
Show that the points A(1, 3, 4), B(–1, 6, 10), C(–7, 4, 7) and D(–5, 1, 1) are the vertices of a rhombus.
Solution
Let A(1,3,4) , B(\[-\]1,6,10) , C(\[-\]7,4,7) and D (\[-\]5,1,1) be the vertices of quadrilateral \[\square ABCD\]
\[AB = \sqrt{\left( - 1 - 1 \right)^2 + \left( 6 - 3 \right)^2 + \left( 10 - 4 \right)^2}\]
\[ = \sqrt{4 + 9 + 36} \]
\[ = \sqrt{49}\]
\[ = 7\]
\[BC = \sqrt{\left( - 7 + 1 \right)^2 + \left( 4 - 6 \right)^2 + \left( 7 - 10 \right)^2}\]
\[ = \sqrt{36 + 4 + 9}\]
\[ = \sqrt{49}\]
\[ = 7\]
\[CD = \sqrt{\left( - 5 + 7 \right)^2 + \left( 1 - 4 \right)^2 + \left( 1 - 7 \right)^2}\]
\[ = \sqrt{4 + 9 + 36}\]
\[ = \sqrt{49}\]
\[ = 7\]
\[DA = \sqrt{\left( 1 + 5 \right)^2 + \left( 3 - 1 \right)^2 + \left( 4 - 1 \right)^2}\]
\[ = \sqrt{36 + 4 + 9}\]
\[ = \sqrt{49}\]
\[ = 7\]
\[ \therefore AB = BC = CD = DA\]
Hence, ABCD is a rhombus.
APPEARS IN
RELATED QUESTIONS
Find the distance between the pairs of points:
(2, 3, 5) and (4, 3, 1)
Find the distance between the following pairs of points:
(–3, 7, 2) and (2, 4, –1)
Find the distance between the following pairs of points:
(–1, 3, –4) and (1, –3, 4)
Find the distance between the following pairs of points:
(2, –1, 3) and (–2, 1, 3)
Verify the following:
(0, 7, –10), (1, 6, –6) and (4, 9, –6) are the vertices of an isosceles triangle.
Verify the following:
(0, 7, 10), (–1, 6, 6) and (–4, 9, 6) are the vertices of a right angled triangle.
Verify the following:
(–1, 2, 1), (1, –2, 5), (4, –7, 8) and (2, –3, 4) are the vertices of a parallelogram.
Find the equation of the set of points which are equidistant from the points (1, 2, 3) and (3, 2, –1).
Find the distance between the following pairs of point:
A(3, 2, –1) and B(–1, –1, –1).
Using distance formula prove that the following points are collinear:
P(0, 7, –7), Q(1, 4, –5) and R(–1, 10, –9)
Determine the points in xy-plan are equidistant from the points A(1, –1, 0), B(2, 1, 2) and C(3, 2, –1).
Determine the points in yz-plane and are equidistant from the points A(1, –1, 0), B(2, 1, 2) and C(3, 2, –1).
Prove that the tetrahedron with vertices at the points O(0, 0, 0), A(0, 1, 1), B(1, 0, 1) and C(1, 1, 0) is a regular one.
Show that the points (3, 2, 2), (–1, 4, 2), (0, 5, 6), (2, 1, 2) lie on a sphere whose centre is (1, 3, 4). Find also its radius.
Find the centroid of a triangle, mid-points of whose sides are (1, 2, –3), (3, 0, 1) and (–1, 1, –4).
The centroid of a triangle ABC is at the point (1, 1, 1). If the coordinates of A and B are (3, –5, 7) and (–1, 7, –6) respectively, find the coordinates of the point C.
If the distance between the points P(a, 2, 1) and Q (1, −1, 1) is 5 units, find the value of a.
Write the coordinates of third vertex of a triangle having centroid at the origin and two vertices at (3, −5, 7) and (3, 0, 1).
Find the distance of the point whose position vector is `(2hati + hatj - hatk)` from the plane `vecr * (hati - 2hatj + 4hatk)` = 9
Find the distance of the point (– 2, 4, – 5) from the line `(x + 3)/3 = (y - 4)/5 = (z + 8)/6`
Find the distance of the point (–1, –5, – 10) from the point of intersection of the line `vecr = 2hati - hatj + 2hatk + lambda(3hati + 4hatj + 2hatk)` and the plane `vecr * (hati - hatj + hatk)` = 5.
The distance of a point P(a, b, c) from x-axis is ______.
Find the angle between the lines `vecr = 3hati - 2hatj + 6hatk + lambda(2hati + hatj + 2hatk)` and `vecr = (2hatj - 5hatk) + mu(6hati + 3hatj + 2hatk)`
Find the equation of a plane which is at a distance `3sqrt(3)` units from origin and the normal to which is equally inclined to coordinate axis
Find the equation of the plane through the intersection of the planes `vecr * (hati + 3hatj) - 6` = 0 and `vecr * (3hati + hatj + 4hatk)` = 0, whose perpendicular distance from origin is unity.
Distance of the point (α, β, γ) from y-axis is ______.
If one of the diameters of the circle x2 + y2 – 2x – 6y + 6 = 0 is a chord of another circle 'C' whose center is at (2, 1), then its radius is ______.