Advertisements
Advertisements
प्रश्न
Show that the points A(1, 3, 4), B(–1, 6, 10), C(–7, 4, 7) and D(–5, 1, 1) are the vertices of a rhombus.
उत्तर
Let A(1,3,4) , B(\[-\]1,6,10) , C(\[-\]7,4,7) and D (\[-\]5,1,1) be the vertices of quadrilateral \[\square ABCD\]
\[AB = \sqrt{\left( - 1 - 1 \right)^2 + \left( 6 - 3 \right)^2 + \left( 10 - 4 \right)^2}\]
\[ = \sqrt{4 + 9 + 36} \]
\[ = \sqrt{49}\]
\[ = 7\]
\[BC = \sqrt{\left( - 7 + 1 \right)^2 + \left( 4 - 6 \right)^2 + \left( 7 - 10 \right)^2}\]
\[ = \sqrt{36 + 4 + 9}\]
\[ = \sqrt{49}\]
\[ = 7\]
\[CD = \sqrt{\left( - 5 + 7 \right)^2 + \left( 1 - 4 \right)^2 + \left( 1 - 7 \right)^2}\]
\[ = \sqrt{4 + 9 + 36}\]
\[ = \sqrt{49}\]
\[ = 7\]
\[DA = \sqrt{\left( 1 + 5 \right)^2 + \left( 3 - 1 \right)^2 + \left( 4 - 1 \right)^2}\]
\[ = \sqrt{36 + 4 + 9}\]
\[ = \sqrt{49}\]
\[ = 7\]
\[ \therefore AB = BC = CD = DA\]
Hence, ABCD is a rhombus.
APPEARS IN
संबंधित प्रश्न
Find the distance between the pairs of points:
(2, 3, 5) and (4, 3, 1)
Find the distance between the following pairs of points:
(–3, 7, 2) and (2, 4, –1)
Find the distance between the following pairs of points:
(2, –1, 3) and (–2, 1, 3)
Show that the points (–2, 3, 5), (1, 2, 3) and (7, 0, –1) are collinear.
Verify the following:
(0, 7, –10), (1, 6, –6) and (4, 9, –6) are the vertices of an isosceles triangle.
Verify the following:
(0, 7, 10), (–1, 6, 6) and (–4, 9, 6) are the vertices of a right angled triangle.
Verify the following:
(–1, 2, 1), (1, –2, 5), (4, –7, 8) and (2, –3, 4) are the vertices of a parallelogram.
Find the equation of the set of points P, the sum of whose distances from A (4, 0, 0) and B (–4, 0, 0) is equal to 10.
Find the distance between the following pairs of points:
P(1, –1, 0) and Q(2, 1, 2)
Find the distance between the following pairs of point:
A(3, 2, –1) and B(–1, –1, –1).
Find the distance between the points P and Q having coordinates (–2, 3, 1) and (2, 1, 2).
Using distance formula prove that the following points are collinear:
A(4, –3, –1), B(5, –7, 6) and C(3, 1, –8)
Determine the points in xy-plan are equidistant from the points A(1, –1, 0), B(2, 1, 2) and C(3, 2, –1).
Determine the points in yz-plane and are equidistant from the points A(1, –1, 0), B(2, 1, 2) and C(3, 2, –1).
Show that the points (0, 7, 10), (–1, 6, 6) and (–4, 9, 6) are the vertices of an isosceles right-angled triangle.
Prove that the tetrahedron with vertices at the points O(0, 0, 0), A(0, 1, 1), B(1, 0, 1) and C(1, 1, 0) is a regular one.
The centroid of a triangle ABC is at the point (1, 1, 1). If the coordinates of A and B are (3, –5, 7) and (–1, 7, –6) respectively, find the coordinates of the point C.
If the distance between the points P(a, 2, 1) and Q (1, −1, 1) is 5 units, find the value of a.
The distance of a point P(a, b, c) from x-axis is ______.
Find the angle between the lines `vecr = 3hati - 2hatj + 6hatk + lambda(2hati + hatj + 2hatk)` and `vecr = (2hatj - 5hatk) + mu(6hati + 3hatj + 2hatk)`
Find the distance of a point (2, 4, –1) from the line `(x + 5)/1 = (y + 3)/4 = (z - 6)/(-9)`
Find the shortest distance between the lines given by `vecr = (8 + 3lambdahati - (9 + 16lambda)hatj + (10 + 7lambda)hatk` and `vecr = 15hati + 29hatj + 5hatk + mu(3hati + 8hatj - 5hatk)`
Find the equation of the plane through the intersection of the planes `vecr * (hati + 3hatj) - 6` = 0 and `vecr * (3hati + hatj + 4hatk)` = 0, whose perpendicular distance from origin is unity.
Distance of the point (α, β, γ) from y-axis is ______.
The distance of the plane `vecr * (2/4 hati + 3/7 hatj - 6/7hatk)` = 1 from the origin is ______.
The points A(5, –1, 1); B(7, –4, 7); C(1, –6, 10) and D(–1, –3, 4) are vertices of a ______.