हिंदी

Find the angle between the lines r→=3i^-2j^+6k^+λ(2i^+j^+2k^) and r→=(2j^-5k^)+μ(6i^+3j^+2k^) - Mathematics

Advertisements
Advertisements

प्रश्न

Find the angle between the lines `vecr = 3hati - 2hatj + 6hatk + lambda(2hati + hatj + 2hatk)` and `vecr = (2hatj - 5hatk) + mu(6hati + 3hatj + 2hatk)`

योग

उत्तर

Here `vecb_1 = 2hat"i" + hat"j" + 2hat"k"` and `vecb_2 = 6hat"i" + 3hat"j" + 2hat"k"`

So, `cos theta = (vecb_1 * vecb_2)/(|vecb_1||vecb_2|)`

= `((2hati + hatj + 2hatk)*(6hati + 3hatj + 2hatk))/(sqrt((2)^2 + (1)^2 + (2)^2) * sqrt((6)^2 + (3)^2 + (2)^2)`

= `(12 + 3 + 4)/(sqrt(4 + 1 + 4) * sqrt(36 + 9 + 4))`

= `19/(sqrt(9)*sqrt(49))`

= `19/(3*7)`

= `19/21`

∴ `theta = cos^-1(19/21)`

Thus, the angle between the lines is `cos^-1(19/21)`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Introduction to Three Dimensional Geometry - Exercise [पृष्ठ २३५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 12 Introduction to Three Dimensional Geometry
Exercise | Q 4 | पृष्ठ २३५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the distance between the following pairs of points:

(–1, 3, –4) and (1, –3, 4)


Show that the points (–2, 3, 5), (1, 2, 3) and (7, 0, –1) are collinear.


Verify the following:

(0, 7, –10), (1, 6, –6) and (4, 9, –6) are the vertices of an isosceles triangle.


Verify the following:

(0, 7, 10), (–1, 6, 6) and (–4, 9, 6) are the vertices of a right angled triangle.


Verify the following:

(–1, 2, 1), (1, –2, 5), (4, –7, 8) and (2, –3, 4) are the vertices of a parallelogram.


Find the distance between the following pairs of points: 

P(1, –1, 0) and Q(2, 1, 2)


Find the distance between the following pairs of point: 

A(3, 2, –1) and B(–1, –1, –1).


Find the distance between the points P and Q having coordinates (–2, 3, 1) and (2, 1, 2).


Using distance formula prove that the following points are collinear: 

P(0, 7, –7), Q(1, 4, –5) and R(–1, 10, –9)


Using distance formula prove that the following points are collinear: 

A(3, –5, 1), B(–1, 0, 8) and C(7, –10, –6)


Determine the points in yz-plane and are equidistant from the points A(1, –1, 0), B(2, 1, 2) and C(3, 2, –1).


Write the coordinates of third vertex of a triangle having centroid at the origin and two vertices at (3, −5, 7) and (3, 0, 1). 


Find the distance of the point whose position vector is `(2hati + hatj - hatk)` from the plane `vecr * (hati - 2hatj + 4hatk)` = 9


Find the distance of the point (–1, –5, – 10) from the point of intersection of the line `vecr = 2hati - hatj + 2hatk + lambda(3hati + 4hatj + 2hatk)` and the plane `vecr * (hati - hatj + hatk)` = 5.


The distance of a point P(a, b, c) from x-axis is ______.


Prove that the line through A(0, –1, –1) and B(4, 5, 1) intersects the line through C(3, 9, 4) and D(– 4, 4, 4).


Find the equation of a plane which is at a distance `3sqrt(3)` units from origin and the normal to which is equally inclined to coordinate axis


Find the shortest distance between the lines given by `vecr = (8 + 3lambdahati - (9 + 16lambda)hatj + (10 + 7lambda)hatk` and `vecr = 15hati + 29hatj + 5hatk + mu(3hati + 8hatj - 5hatk)`


Find the equation of the plane through the intersection of the planes `vecr * (hati + 3hatj) - 6` = 0 and `vecr * (3hati + hatj + 4hatk)` = 0, whose perpendicular distance from origin is unity.


Distance of the point (α, β, γ) from y-axis is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×