हिंदी

Find the distance of the point whose position vector is (2i^+j^-k^) from the plane r→⋅(i^-2j^+4k^) = 9 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the distance of the point whose position vector is `(2hati + hatj - hatk)` from the plane `vecr * (hati - 2hatj + 4hatk)` = 9

योग

उत्तर

Here `veca = 2hati + hatj - hatk`

`vecn = hati - 2hatj + 4hatk`

And d = 9

So, the required distance is `(|(2hati + hatj - hatk)*(hati - 2hatj + 4hatk) - 9|)/sqrt(1 + 4 + 16)`

= `(|2 - 2 - 4 - 9|)/sqrt(21)`

= `13/sqrt(21)`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Introduction to Three Dimensional Geometry - Solved Examples [पृष्ठ २२५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 12 Introduction to Three Dimensional Geometry
Solved Examples | Q 5 | पृष्ठ २२५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the distance between the following pairs of points:

(–3, 7, 2) and (2, 4, –1)


Find the distance between the following pairs of points:

(–1, 3, –4) and (1, –3, 4)


Find the distance between the following pairs of points:

(2, –1, 3) and (–2, 1, 3)


Show that the points (–2, 3, 5), (1, 2, 3) and (7, 0, –1) are collinear.


Verify the following:

(0, 7, 10), (–1, 6, 6) and (–4, 9, 6) are the vertices of a right angled triangle.


Find the equation of the set of points which are equidistant from the points (1, 2, 3) and (3, 2, –1).


Find the equation of the set of points P, the sum of whose distances from A (4, 0, 0) and B (–4, 0, 0) is equal to 10.


Find the distance between the following pairs of points: 

P(1, –1, 0) and Q(2, 1, 2)


Find the distance between the points P and Q having coordinates (–2, 3, 1) and (2, 1, 2).


Determine the points in xy-plan are equidistant from the points A(1, –1, 0), B(2, 1, 2) and C(3, 2, –1).


Show that the points (0, 7, 10), (–1, 6, 6) and (–4, 9, 6) are the vertices of an isosceles right-angled triangle. 


Show that the points A(1, 3, 4), B(–1, 6, 10), C(–7, 4, 7) and D(–5, 1, 1) are the vertices of a rhombus. 


Prove that the tetrahedron with vertices at the points O(0, 0, 0), A(0, 1, 1), B(1, 0, 1) and C(1, 1, 0) is a regular one.


Show that the points (3, 2, 2), (–1, 4, 2), (0, 5, 6), (2, 1, 2) lie on a sphere whose centre is (1, 3, 4). Find also its radius.


Find the centroid of a triangle, mid-points of whose sides are (1, 2, –3), (3, 0, 1) and (–1, 1, –4). 


If the distance between the points P(a, 2, 1) and Q (1, −1, 1) is 5 units, find the value of a


Write the coordinates of third vertex of a triangle having centroid at the origin and two vertices at (3, −5, 7) and (3, 0, 1). 


Find the distance of the point (–1, –5, – 10) from the point of intersection of the line `vecr = 2hati - hatj + 2hatk + lambda(3hati + 4hatj + 2hatk)` and the plane `vecr * (hati - hatj + hatk)` = 5.


Find the equation of a plane which is at a distance `3sqrt(3)` units from origin and the normal to which is equally inclined to coordinate axis


Find the shortest distance between the lines given by `vecr = (8 + 3lambdahati - (9 + 16lambda)hatj + (10 + 7lambda)hatk` and `vecr = 15hati + 29hatj + 5hatk + mu(3hati + 8hatj - 5hatk)`


Find the equation of the plane through the intersection of the planes `vecr * (hati + 3hatj) - 6` = 0 and `vecr * (3hati + hatj + 4hatk)` = 0, whose perpendicular distance from origin is unity.


Distance of the point (α, β, γ) from y-axis is ______.


The distance of the plane `vecr * (2/4 hati + 3/7 hatj - 6/7hatk)` = 1 from the origin is ______.


The points A(5, –1, 1); B(7, –4, 7); C(1, –6, 10) and D(–1, –3, 4) are vertices of a ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×