Advertisements
Advertisements
प्रश्न
Verify the following:
(0, 7, 10), (–1, 6, 6) and (–4, 9, 6) are the vertices of a right angled triangle.
उत्तर
Let (0, 7, 10), (–1, 6, 6), and (–4, 9, 6) be denoted by A, B, and C respectively.
AB = `sqrt((–1 – 0)^2 + (6 – 7)^2 + (6 – 10)^2)`
= `sqrt((–1)^2 + (-1)^2 + (-4)^2)`
= `sqrt(1 + 1 + 16)`
= `sqrt18`
= `3sqrt2`
BC = `sqrt((–4 + 1)^2 + (9 – 6)^2 + (6 – 6)^2)`
= `sqrt((–3)^2 + (3)^2 + (0)^2)`
= `sqrt(9 + 9)`
= `sqrt18`
= `3sqrt2`
CA = `sqrt((0 + 4)^2 + (9 – 7)^2 + (6 – 10)^2)`
= `sqrt((4)^2 + (-2)^2 + (4)^2)`
= `sqrt(16 + 4 + 16)`
= `sqrt36`
= 6
AB2 + BC2 = 18 + 18 = 36
Now, AC2 = 36
∴ AB2 + BC2 = AC2
Hence, the given vertices are of right angled triangle.
APPEARS IN
संबंधित प्रश्न
Find the distance between the following pairs of points:
(–3, 7, 2) and (2, 4, –1)
Find the distance between the following pairs of points:
(–1, 3, –4) and (1, –3, 4)
Find the distance between the following pairs of points:
(2, –1, 3) and (–2, 1, 3)
Verify the following:
(–1, 2, 1), (1, –2, 5), (4, –7, 8) and (2, –3, 4) are the vertices of a parallelogram.
Find the equation of the set of points which are equidistant from the points (1, 2, 3) and (3, 2, –1).
Find the distance between the following pairs of points:
P(1, –1, 0) and Q(2, 1, 2)
Find the distance between the following pairs of point:
A(3, 2, –1) and B(–1, –1, –1).
Find the distance between the points P and Q having coordinates (–2, 3, 1) and (2, 1, 2).
Using distance formula prove that the following points are collinear:
P(0, 7, –7), Q(1, 4, –5) and R(–1, 10, –9)
Using distance formula prove that the following points are collinear:
A(3, –5, 1), B(–1, 0, 8) and C(7, –10, –6)
Determine the points in xy-plan are equidistant from the points A(1, –1, 0), B(2, 1, 2) and C(3, 2, –1).
Determine the points in yz-plane and are equidistant from the points A(1, –1, 0), B(2, 1, 2) and C(3, 2, –1).
Show that the points (0, 7, 10), (–1, 6, 6) and (–4, 9, 6) are the vertices of an isosceles right-angled triangle.
Prove that the tetrahedron with vertices at the points O(0, 0, 0), A(0, 1, 1), B(1, 0, 1) and C(1, 1, 0) is a regular one.
The centroid of a triangle ABC is at the point (1, 1, 1). If the coordinates of A and B are (3, –5, 7) and (–1, 7, –6) respectively, find the coordinates of the point C.
If the distance between the points P(a, 2, 1) and Q (1, −1, 1) is 5 units, find the value of a.
Write the coordinates of third vertex of a triangle having centroid at the origin and two vertices at (3, −5, 7) and (3, 0, 1).
Find the distance of the point whose position vector is `(2hati + hatj - hatk)` from the plane `vecr * (hati - 2hatj + 4hatk)` = 9
Find the distance of the point (– 2, 4, – 5) from the line `(x + 3)/3 = (y - 4)/5 = (z + 8)/6`
Find the distance of the point (–1, –5, – 10) from the point of intersection of the line `vecr = 2hati - hatj + 2hatk + lambda(3hati + 4hatj + 2hatk)` and the plane `vecr * (hati - hatj + hatk)` = 5.
The distance of a point P(a, b, c) from x-axis is ______.
Prove that the line through A(0, –1, –1) and B(4, 5, 1) intersects the line through C(3, 9, 4) and D(– 4, 4, 4).
Find the distance of a point (2, 4, –1) from the line `(x + 5)/1 = (y + 3)/4 = (z - 6)/(-9)`
Find the shortest distance between the lines given by `vecr = (8 + 3lambdahati - (9 + 16lambda)hatj + (10 + 7lambda)hatk` and `vecr = 15hati + 29hatj + 5hatk + mu(3hati + 8hatj - 5hatk)`
Find the equation of the plane through the intersection of the planes `vecr * (hati + 3hatj) - 6` = 0 and `vecr * (3hati + hatj + 4hatk)` = 0, whose perpendicular distance from origin is unity.
Distance of the point (α, β, γ) from y-axis is ______.
If one of the diameters of the circle x2 + y2 – 2x – 6y + 6 = 0 is a chord of another circle 'C' whose center is at (2, 1), then its radius is ______.
The points A(5, –1, 1); B(7, –4, 7); C(1, –6, 10) and D(–1, –3, 4) are vertices of a ______.