हिंदी

Find the distance of the point (– 2, 4, – 5) from the line x+33=y-45=z+86 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the distance of the point (– 2, 4, – 5) from the line `(x + 3)/3 = (y - 4)/5 = (z + 8)/6`

योग

उत्तर

Here P (–2, 4, – 5) is the given point.

Any point Q on the line is given by `(3lambda - 3, 5lambda + 4, (6lambda - 8)`

`vec"PQ" = (3lambda - 1) hati + 5lambdahatj + (6lambda - 3)hatk`.

Since `vec"PQ" ⊥ (3hati + 5hatj + 6hatk)`, we have

`3(3lambda - 1) + 5(5lambda) + 6(6lambda - 3)` = 0

`9lambda + 25lambda + 36lambda` = 21

i.e. `lambda = 3/10`

Thus `vec"PQ" = - 1/10 hati + 15/10 hatj - 12/10 hatk`

Hence `|vec"PQ"| = 1/10 sqrt(1 + 225 + 144)`

= `sqrt(37/10)`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Introduction to Three Dimensional Geometry - Solved Examples [पृष्ठ २२६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 12 Introduction to Three Dimensional Geometry
Solved Examples | Q 6 | पृष्ठ २२६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the distance between the pairs of points:

(2, 3, 5) and (4, 3, 1)


Find the distance between the following pairs of points:

(–3, 7, 2) and (2, 4, –1)


Find the distance between the following pairs of points:

(–1, 3, –4) and (1, –3, 4)


Find the distance between the following pairs of points:

(2, –1, 3) and (–2, 1, 3)


Show that the points (–2, 3, 5), (1, 2, 3) and (7, 0, –1) are collinear.


Verify the following:

(–1, 2, 1), (1, –2, 5), (4, –7, 8) and (2, –3, 4) are the vertices of a parallelogram.


Find the equation of the set of points which are equidistant from the points (1, 2, 3) and (3, 2, –1).


Find the equation of the set of points P, the sum of whose distances from A (4, 0, 0) and B (–4, 0, 0) is equal to 10.


Find the distance between the following pairs of points: 

P(1, –1, 0) and Q(2, 1, 2)


Using distance formula prove that the following points are collinear:

A(4, –3, –1), B(5, –7, 6) and C(3, 1, –8)


Using distance formula prove that the following points are collinear: 

P(0, 7, –7), Q(1, 4, –5) and R(–1, 10, –9)


Determine the points in xy-plan are equidistant from the points A(1, –1, 0), B(2, 1, 2) and C(3, 2, –1).


Determine the points in yz-plane and are equidistant from the points A(1, –1, 0), B(2, 1, 2) and C(3, 2, –1).


Find the centroid of a triangle, mid-points of whose sides are (1, 2, –3), (3, 0, 1) and (–1, 1, –4). 


The centroid of a triangle ABC is at the point (1, 1, 1). If the coordinates of and are (3, –5, 7) and (–1, 7, –6) respectively, find the coordinates of the point C.


Write the coordinates of third vertex of a triangle having centroid at the origin and two vertices at (3, −5, 7) and (3, 0, 1). 


Find the distance of the point whose position vector is `(2hati + hatj - hatk)` from the plane `vecr * (hati - 2hatj + 4hatk)` = 9


The distance of a point P(a, b, c) from x-axis is ______.


Find the equation of a plane which is at a distance `3sqrt(3)` units from origin and the normal to which is equally inclined to coordinate axis


Find the distance of a point (2, 4, –1) from the line `(x + 5)/1 = (y + 3)/4 = (z - 6)/(-9)`


The distance of the plane `vecr * (2/4 hati + 3/7 hatj - 6/7hatk)` = 1 from the origin is ______.


If one of the diameters of the circle x2 + y2 – 2x – 6y + 6 = 0 is a chord of another circle 'C' whose center is at (2, 1), then its radius is ______.


The points A(5, –1, 1); B(7, –4, 7); C(1, –6, 10) and D(–1, –3, 4) are vertices of a ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×