मराठी

Find the distance of the point (– 2, 4, – 5) from the line x+33=y-45=z+86 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the distance of the point (– 2, 4, – 5) from the line `(x + 3)/3 = (y - 4)/5 = (z + 8)/6`

बेरीज

उत्तर

Here P (–2, 4, – 5) is the given point.

Any point Q on the line is given by `(3lambda - 3, 5lambda + 4, (6lambda - 8)`

`vec"PQ" = (3lambda - 1) hati + 5lambdahatj + (6lambda - 3)hatk`.

Since `vec"PQ" ⊥ (3hati + 5hatj + 6hatk)`, we have

`3(3lambda - 1) + 5(5lambda) + 6(6lambda - 3)` = 0

`9lambda + 25lambda + 36lambda` = 21

i.e. `lambda = 3/10`

Thus `vec"PQ" = - 1/10 hati + 15/10 hatj - 12/10 hatk`

Hence `|vec"PQ"| = 1/10 sqrt(1 + 225 + 144)`

= `sqrt(37/10)`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 12: Introduction to Three Dimensional Geometry - Solved Examples [पृष्ठ २२६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 12 Introduction to Three Dimensional Geometry
Solved Examples | Q 6 | पृष्ठ २२६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the distance between the pairs of points:

(2, 3, 5) and (4, 3, 1)


Find the distance between the following pairs of points:

(–3, 7, 2) and (2, 4, –1)


Find the distance between the following pairs of points:

(–1, 3, –4) and (1, –3, 4)


Find the distance between the following pairs of points:

(2, –1, 3) and (–2, 1, 3)


Show that the points (–2, 3, 5), (1, 2, 3) and (7, 0, –1) are collinear.


Verify the following:

(0, 7, 10), (–1, 6, 6) and (–4, 9, 6) are the vertices of a right angled triangle.


Find the distance between the points P and Q having coordinates (–2, 3, 1) and (2, 1, 2).


Using distance formula prove that the following points are collinear:

A(4, –3, –1), B(5, –7, 6) and C(3, 1, –8)


Using distance formula prove that the following points are collinear: 

P(0, 7, –7), Q(1, 4, –5) and R(–1, 10, –9)


Using distance formula prove that the following points are collinear: 

A(3, –5, 1), B(–1, 0, 8) and C(7, –10, –6)


Show that the points A(1, 3, 4), B(–1, 6, 10), C(–7, 4, 7) and D(–5, 1, 1) are the vertices of a rhombus. 


Prove that the tetrahedron with vertices at the points O(0, 0, 0), A(0, 1, 1), B(1, 0, 1) and C(1, 1, 0) is a regular one.


Show that the points (3, 2, 2), (–1, 4, 2), (0, 5, 6), (2, 1, 2) lie on a sphere whose centre is (1, 3, 4). Find also its radius.


The centroid of a triangle ABC is at the point (1, 1, 1). If the coordinates of and are (3, –5, 7) and (–1, 7, –6) respectively, find the coordinates of the point C.


If the distance between the points P(a, 2, 1) and Q (1, −1, 1) is 5 units, find the value of a


The distance of a point P(a, b, c) from x-axis is ______.


Find the angle between the lines `vecr = 3hati - 2hatj + 6hatk + lambda(2hati + hatj + 2hatk)` and `vecr = (2hatj - 5hatk) + mu(6hati + 3hatj + 2hatk)`


Find the equation of a plane which is at a distance `3sqrt(3)` units from origin and the normal to which is equally inclined to coordinate axis


Find the distance of a point (2, 4, –1) from the line `(x + 5)/1 = (y + 3)/4 = (z - 6)/(-9)`


Find the shortest distance between the lines given by `vecr = (8 + 3lambdahati - (9 + 16lambda)hatj + (10 + 7lambda)hatk` and `vecr = 15hati + 29hatj + 5hatk + mu(3hati + 8hatj - 5hatk)`


The distance of the plane `vecr * (2/4 hati + 3/7 hatj - 6/7hatk)` = 1 from the origin is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×