Advertisements
Advertisements
प्रश्न
The distance of the plane `vecr * (2/4 hati + 3/7 hatj - 6/7hatk)` = 1 from the origin is ______.
पर्याय
1
7
`1/7`
None of these
उत्तर
The distance of the plane `vecr * (2/4 hati + 3/7 hatj - 6/7hatk)` = 1 from the origin is 1.
Explanation:
The given equation is of the form `vecr * hatn = p`
Where `hatn` is a unit vector and p > 0
i.e., in the normal form.
APPEARS IN
संबंधित प्रश्न
Find the distance between the following pairs of points:
(–3, 7, 2) and (2, 4, –1)
Find the distance between the following pairs of points:
(2, –1, 3) and (–2, 1, 3)
Show that the points (–2, 3, 5), (1, 2, 3) and (7, 0, –1) are collinear.
Verify the following:
(0, 7, –10), (1, 6, –6) and (4, 9, –6) are the vertices of an isosceles triangle.
Verify the following:
(0, 7, 10), (–1, 6, 6) and (–4, 9, 6) are the vertices of a right angled triangle.
Verify the following:
(–1, 2, 1), (1, –2, 5), (4, –7, 8) and (2, –3, 4) are the vertices of a parallelogram.
Find the equation of the set of points which are equidistant from the points (1, 2, 3) and (3, 2, –1).
Find the equation of the set of points P, the sum of whose distances from A (4, 0, 0) and B (–4, 0, 0) is equal to 10.
Find the distance between the following pairs of point:
A(3, 2, –1) and B(–1, –1, –1).
Using distance formula prove that the following points are collinear:
A(4, –3, –1), B(5, –7, 6) and C(3, 1, –8)
Using distance formula prove that the following points are collinear:
P(0, 7, –7), Q(1, 4, –5) and R(–1, 10, –9)
Using distance formula prove that the following points are collinear:
A(3, –5, 1), B(–1, 0, 8) and C(7, –10, –6)
Determine the points in xy-plan are equidistant from the points A(1, –1, 0), B(2, 1, 2) and C(3, 2, –1).
Determine the points in yz-plane and are equidistant from the points A(1, –1, 0), B(2, 1, 2) and C(3, 2, –1).
Show that the points (0, 7, 10), (–1, 6, 6) and (–4, 9, 6) are the vertices of an isosceles right-angled triangle.
Show that the points A(1, 3, 4), B(–1, 6, 10), C(–7, 4, 7) and D(–5, 1, 1) are the vertices of a rhombus.
Show that the points (3, 2, 2), (–1, 4, 2), (0, 5, 6), (2, 1, 2) lie on a sphere whose centre is (1, 3, 4). Find also its radius.
The centroid of a triangle ABC is at the point (1, 1, 1). If the coordinates of A and B are (3, –5, 7) and (–1, 7, –6) respectively, find the coordinates of the point C.
If the distance between the points P(a, 2, 1) and Q (1, −1, 1) is 5 units, find the value of a.
The distance of a point P(a, b, c) from x-axis is ______.
Find the angle between the lines `vecr = 3hati - 2hatj + 6hatk + lambda(2hati + hatj + 2hatk)` and `vecr = (2hatj - 5hatk) + mu(6hati + 3hatj + 2hatk)`
Prove that the line through A(0, –1, –1) and B(4, 5, 1) intersects the line through C(3, 9, 4) and D(– 4, 4, 4).
Find the distance of a point (2, 4, –1) from the line `(x + 5)/1 = (y + 3)/4 = (z - 6)/(-9)`
The points A(5, –1, 1); B(7, –4, 7); C(1, –6, 10) and D(–1, –3, 4) are vertices of a ______.