Advertisements
Advertisements
प्रश्न
Verify the following:
(0, 7, –10), (1, 6, –6) and (4, 9, –6) are the vertices of an isosceles triangle.
उत्तर
Let the vertices of triangle ABC be A(0, 7, –10), B(1, 6, –6) and C(4, 9, –6).
Now, AB = `sqrt((1 - 0)^2 + (6 - 7)^2 + (-6 +10)^2)`
= `sqrt((1)^2 + (-1)^2 + (4)^2)`
= `sqrt(1 + 1 + 16)`
= `sqrt18`
= `3sqrt2`
BC = `sqrt((4 - 1)^2 + (9 - 6)^2 + (-6 + 6)^2)`
= `sqrt((3)^2 + (3)^2`
= `sqrt(9 +9)`
= `sqrt18`
= `3sqrt2`
CA = `sqrt((0 - 4)^2 + (7 - 9)^2 + (-10 + 6)^2)`
= `sqrt((-4)^2 + (-2)^2 + (-4)^2)`
= `sqrt(16 + 4 + 16)`
= `sqrt36`
= 6
Here, AB = BC ≠ CA
Hence, the given vertices AB = BC are of the isosceles triangle.
APPEARS IN
संबंधित प्रश्न
Find the distance between the pairs of points:
(2, 3, 5) and (4, 3, 1)
Find the distance between the following pairs of points:
(–3, 7, 2) and (2, 4, –1)
Find the distance between the following pairs of points:
(–1, 3, –4) and (1, –3, 4)
Show that the points (–2, 3, 5), (1, 2, 3) and (7, 0, –1) are collinear.
Verify the following:
(0, 7, 10), (–1, 6, 6) and (–4, 9, 6) are the vertices of a right angled triangle.
Verify the following:
(–1, 2, 1), (1, –2, 5), (4, –7, 8) and (2, –3, 4) are the vertices of a parallelogram.
Find the equation of the set of points which are equidistant from the points (1, 2, 3) and (3, 2, –1).
Find the distance between the following pairs of points:
P(1, –1, 0) and Q(2, 1, 2)
Using distance formula prove that the following points are collinear:
A(4, –3, –1), B(5, –7, 6) and C(3, 1, –8)
Using distance formula prove that the following points are collinear:
P(0, 7, –7), Q(1, 4, –5) and R(–1, 10, –9)
Determine the points in xy-plan are equidistant from the points A(1, –1, 0), B(2, 1, 2) and C(3, 2, –1).
Determine the points in yz-plane and are equidistant from the points A(1, –1, 0), B(2, 1, 2) and C(3, 2, –1).
Show that the points (0, 7, 10), (–1, 6, 6) and (–4, 9, 6) are the vertices of an isosceles right-angled triangle.
Show that the points (3, 2, 2), (–1, 4, 2), (0, 5, 6), (2, 1, 2) lie on a sphere whose centre is (1, 3, 4). Find also its radius.
Find the centroid of a triangle, mid-points of whose sides are (1, 2, –3), (3, 0, 1) and (–1, 1, –4).
If the distance between the points P(a, 2, 1) and Q (1, −1, 1) is 5 units, find the value of a.
Find the distance of the point (–1, –5, – 10) from the point of intersection of the line `vecr = 2hati - hatj + 2hatk + lambda(3hati + 4hatj + 2hatk)` and the plane `vecr * (hati - hatj + hatk)` = 5.
The distance of a point P(a, b, c) from x-axis is ______.
Find the angle between the lines `vecr = 3hati - 2hatj + 6hatk + lambda(2hati + hatj + 2hatk)` and `vecr = (2hatj - 5hatk) + mu(6hati + 3hatj + 2hatk)`
Prove that the line through A(0, –1, –1) and B(4, 5, 1) intersects the line through C(3, 9, 4) and D(– 4, 4, 4).
Find the shortest distance between the lines given by `vecr = (8 + 3lambdahati - (9 + 16lambda)hatj + (10 + 7lambda)hatk` and `vecr = 15hati + 29hatj + 5hatk + mu(3hati + 8hatj - 5hatk)`
Find the equation of the plane through the intersection of the planes `vecr * (hati + 3hatj) - 6` = 0 and `vecr * (3hati + hatj + 4hatk)` = 0, whose perpendicular distance from origin is unity.
Distance of the point (α, β, γ) from y-axis is ______.
The distance of the plane `vecr * (2/4 hati + 3/7 hatj - 6/7hatk)` = 1 from the origin is ______.
If one of the diameters of the circle x2 + y2 – 2x – 6y + 6 = 0 is a chord of another circle 'C' whose center is at (2, 1), then its radius is ______.
The points A(5, –1, 1); B(7, –4, 7); C(1, –6, 10) and D(–1, –3, 4) are vertices of a ______.