Advertisements
Advertisements
प्रश्न
Find the distance between the following pairs of points:
(–1, 3, –4) and (1, –3, 4)
उत्तर
The distance PQ between the points P(- 1, 3, -4) and Q(1, -3, 4) is
PQ = `sqrt((1 + 1)^2 + (-3 -3)^2 + (4 + 4)^2)`
= `sqrt((2)^2 + (-6)^3 + (8)^2)`
= `sqrt(4 + 36 + 64)`
= `sqrt104`
= `2sqrt26`
APPEARS IN
संबंधित प्रश्न
Find the distance between the pairs of points:
(2, 3, 5) and (4, 3, 1)
Find the distance between the following pairs of points:
(–3, 7, 2) and (2, 4, –1)
Show that the points (–2, 3, 5), (1, 2, 3) and (7, 0, –1) are collinear.
Verify the following:
(0, 7, 10), (–1, 6, 6) and (–4, 9, 6) are the vertices of a right angled triangle.
Verify the following:
(–1, 2, 1), (1, –2, 5), (4, –7, 8) and (2, –3, 4) are the vertices of a parallelogram.
Find the equation of the set of points which are equidistant from the points (1, 2, 3) and (3, 2, –1).
Find the distance between the following pairs of points:
P(1, –1, 0) and Q(2, 1, 2)
Find the distance between the following pairs of point:
A(3, 2, –1) and B(–1, –1, –1).
Find the distance between the points P and Q having coordinates (–2, 3, 1) and (2, 1, 2).
Using distance formula prove that the following points are collinear:
A(4, –3, –1), B(5, –7, 6) and C(3, 1, –8)
Using distance formula prove that the following points are collinear:
P(0, 7, –7), Q(1, 4, –5) and R(–1, 10, –9)
Determine the points in yz-plane and are equidistant from the points A(1, –1, 0), B(2, 1, 2) and C(3, 2, –1).
Prove that the tetrahedron with vertices at the points O(0, 0, 0), A(0, 1, 1), B(1, 0, 1) and C(1, 1, 0) is a regular one.
Show that the points (3, 2, 2), (–1, 4, 2), (0, 5, 6), (2, 1, 2) lie on a sphere whose centre is (1, 3, 4). Find also its radius.
Find the centroid of a triangle, mid-points of whose sides are (1, 2, –3), (3, 0, 1) and (–1, 1, –4).
The centroid of a triangle ABC is at the point (1, 1, 1). If the coordinates of A and B are (3, –5, 7) and (–1, 7, –6) respectively, find the coordinates of the point C.
If the distance between the points P(a, 2, 1) and Q (1, −1, 1) is 5 units, find the value of a.
Find the distance of the point (– 2, 4, – 5) from the line `(x + 3)/3 = (y - 4)/5 = (z + 8)/6`
Find the distance of the point (–1, –5, – 10) from the point of intersection of the line `vecr = 2hati - hatj + 2hatk + lambda(3hati + 4hatj + 2hatk)` and the plane `vecr * (hati - hatj + hatk)` = 5.
Find the angle between the lines `vecr = 3hati - 2hatj + 6hatk + lambda(2hati + hatj + 2hatk)` and `vecr = (2hatj - 5hatk) + mu(6hati + 3hatj + 2hatk)`
Find the equation of a plane which is at a distance `3sqrt(3)` units from origin and the normal to which is equally inclined to coordinate axis
Find the distance of a point (2, 4, –1) from the line `(x + 5)/1 = (y + 3)/4 = (z - 6)/(-9)`
Find the shortest distance between the lines given by `vecr = (8 + 3lambdahati - (9 + 16lambda)hatj + (10 + 7lambda)hatk` and `vecr = 15hati + 29hatj + 5hatk + mu(3hati + 8hatj - 5hatk)`
Find the equation of the plane through the intersection of the planes `vecr * (hati + 3hatj) - 6` = 0 and `vecr * (3hati + hatj + 4hatk)` = 0, whose perpendicular distance from origin is unity.
Distance of the point (α, β, γ) from y-axis is ______.
The points A(5, –1, 1); B(7, –4, 7); C(1, –6, 10) and D(–1, –3, 4) are vertices of a ______.