Advertisements
Advertisements
प्रश्न
Show that the points (–2, 3, 5), (1, 2, 3) and (7, 0, –1) are collinear.
उत्तर
Let the distance between the points A(−2, 3, 5), and B(1, 2, 3) be
AB = `sqrt((1 + 2)^2 + (2 - 3)^2 + (3 - 5)^2)`
= `sqrt((3)^2 + (-1)^2 + (-2)^2)`
= `sqrt(9 + 1 + 4)`
= `sqrt14`
BC = `sqrt((7 - 1)^2 + (0 - 2)^2 + (-1 -3)^2)`
= `sqrt((6)^2 + (-2)^2 + (-4)^2)`
= `sqrt(36 + 4 + 16)`
= `sqrt56`
= `2sqrt14`
Distance between points A(−2, 3, 5) and C(7, 0, −1)
AC = `sqrt((7 + 2)^2 + (0 - 3)^2 + (-1 -5)^2)`
= `sqrt((9)^2 + (-3)^2 + (-6)^2)`
= `sqrt(81 + 9 + 36)`
= `sqrt126`
= `3sqrt14`
Now, AB + BC = `sqrt14 + 2sqrt14`
= `3sqrt14`
AC = `3sqrt14`
Here, AB + BC = AC
Hence, points A, B, C are collinear.
APPEARS IN
संबंधित प्रश्न
Find the distance between the pairs of points:
(2, 3, 5) and (4, 3, 1)
Find the distance between the following pairs of points:
(–3, 7, 2) and (2, 4, –1)
Find the distance between the following pairs of points:
(–1, 3, –4) and (1, –3, 4)
Verify the following:
(0, 7, –10), (1, 6, –6) and (4, 9, –6) are the vertices of an isosceles triangle.
Verify the following:
(0, 7, 10), (–1, 6, 6) and (–4, 9, 6) are the vertices of a right angled triangle.
Verify the following:
(–1, 2, 1), (1, –2, 5), (4, –7, 8) and (2, –3, 4) are the vertices of a parallelogram.
Find the equation of the set of points which are equidistant from the points (1, 2, 3) and (3, 2, –1).
Find the distance between the following pairs of points:
P(1, –1, 0) and Q(2, 1, 2)
Find the distance between the following pairs of point:
A(3, 2, –1) and B(–1, –1, –1).
Using distance formula prove that the following points are collinear:
P(0, 7, –7), Q(1, 4, –5) and R(–1, 10, –9)
Using distance formula prove that the following points are collinear:
A(3, –5, 1), B(–1, 0, 8) and C(7, –10, –6)
Show that the points (0, 7, 10), (–1, 6, 6) and (–4, 9, 6) are the vertices of an isosceles right-angled triangle.
Show that the points A(1, 3, 4), B(–1, 6, 10), C(–7, 4, 7) and D(–5, 1, 1) are the vertices of a rhombus.
Prove that the tetrahedron with vertices at the points O(0, 0, 0), A(0, 1, 1), B(1, 0, 1) and C(1, 1, 0) is a regular one.
Find the centroid of a triangle, mid-points of whose sides are (1, 2, –3), (3, 0, 1) and (–1, 1, –4).
The centroid of a triangle ABC is at the point (1, 1, 1). If the coordinates of A and B are (3, –5, 7) and (–1, 7, –6) respectively, find the coordinates of the point C.
If the distance between the points P(a, 2, 1) and Q (1, −1, 1) is 5 units, find the value of a.
Find the distance of the point whose position vector is `(2hati + hatj - hatk)` from the plane `vecr * (hati - 2hatj + 4hatk)` = 9
Find the distance of the point (– 2, 4, – 5) from the line `(x + 3)/3 = (y - 4)/5 = (z + 8)/6`
Find the distance of the point (–1, –5, – 10) from the point of intersection of the line `vecr = 2hati - hatj + 2hatk + lambda(3hati + 4hatj + 2hatk)` and the plane `vecr * (hati - hatj + hatk)` = 5.
The distance of a point P(a, b, c) from x-axis is ______.
Prove that the line through A(0, –1, –1) and B(4, 5, 1) intersects the line through C(3, 9, 4) and D(– 4, 4, 4).
Find the equation of a plane which is at a distance `3sqrt(3)` units from origin and the normal to which is equally inclined to coordinate axis
Find the equation of the plane through the intersection of the planes `vecr * (hati + 3hatj) - 6` = 0 and `vecr * (3hati + hatj + 4hatk)` = 0, whose perpendicular distance from origin is unity.
The distance of the plane `vecr * (2/4 hati + 3/7 hatj - 6/7hatk)` = 1 from the origin is ______.
If one of the diameters of the circle x2 + y2 – 2x – 6y + 6 = 0 is a chord of another circle 'C' whose center is at (2, 1), then its radius is ______.
The points A(5, –1, 1); B(7, –4, 7); C(1, –6, 10) and D(–1, –3, 4) are vertices of a ______.