English

Verify the following: (0, 7, –10), (1, 6, –6) and (4, 9, –6) are the vertices of an isosceles triangle. - Mathematics

Advertisements
Advertisements

Question

Verify the following:

(0, 7, –10), (1, 6, –6) and (4, 9, –6) are the vertices of an isosceles triangle.

Sum

Solution

Let the vertices of triangle ABC be A(0, 7, –10), B(1, 6, –6) and C(4, 9, –6).

Now, AB = `sqrt((1 - 0)^2 + (6 - 7)^2 + (-6 +10)^2)`

= `sqrt((1)^2 + (-1)^2 + (4)^2)`

= `sqrt(1 + 1 + 16)`

= `sqrt18`

= `3sqrt2`

BC = `sqrt((4 - 1)^2 + (9 - 6)^2 + (-6 + 6)^2)`

= `sqrt((3)^2 + (3)^2`

= `sqrt(9 +9)`

= `sqrt18`

= `3sqrt2`

CA = `sqrt((0 - 4)^2 + (7 - 9)^2 + (-10 + 6)^2)`

= `sqrt((-4)^2 + (-2)^2 + (-4)^2)`

= `sqrt(16 + 4 + 16)`

= `sqrt36`

= 6

Here, AB = BC ≠ CA

Hence, the given vertices AB = BC are of the isosceles triangle.

shaalaa.com
  Is there an error in this question or solution?
Chapter 12: Introduction to Three Dimensional Geometry - Exercise 12.2 [Page 273]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 12 Introduction to Three Dimensional Geometry
Exercise 12.2 | Q 3.1 | Page 273

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the distance between the pairs of points:

(2, 3, 5) and (4, 3, 1)


Find the distance between the following pairs of points:

(–3, 7, 2) and (2, 4, –1)


Find the distance between the following pairs of points:

(–1, 3, –4) and (1, –3, 4)


Find the distance between the following pairs of points:

(2, –1, 3) and (–2, 1, 3)


Show that the points (–2, 3, 5), (1, 2, 3) and (7, 0, –1) are collinear.


Verify the following:

(–1, 2, 1), (1, –2, 5), (4, –7, 8) and (2, –3, 4) are the vertices of a parallelogram.


Find the equation of the set of points P, the sum of whose distances from A (4, 0, 0) and B (–4, 0, 0) is equal to 10.


Find the distance between the following pairs of points: 

P(1, –1, 0) and Q(2, 1, 2)


Find the distance between the following pairs of point: 

A(3, 2, –1) and B(–1, –1, –1).


Using distance formula prove that the following points are collinear:

A(4, –3, –1), B(5, –7, 6) and C(3, 1, –8)


Using distance formula prove that the following points are collinear: 

A(3, –5, 1), B(–1, 0, 8) and C(7, –10, –6)


Determine the points in xy-plan are equidistant from the points A(1, –1, 0), B(2, 1, 2) and C(3, 2, –1).


Determine the points in yz-plane and are equidistant from the points A(1, –1, 0), B(2, 1, 2) and C(3, 2, –1).


Show that the points (0, 7, 10), (–1, 6, 6) and (–4, 9, 6) are the vertices of an isosceles right-angled triangle. 


Show that the points A(1, 3, 4), B(–1, 6, 10), C(–7, 4, 7) and D(–5, 1, 1) are the vertices of a rhombus. 


Prove that the tetrahedron with vertices at the points O(0, 0, 0), A(0, 1, 1), B(1, 0, 1) and C(1, 1, 0) is a regular one.


The centroid of a triangle ABC is at the point (1, 1, 1). If the coordinates of and are (3, –5, 7) and (–1, 7, –6) respectively, find the coordinates of the point C.


If the distance between the points P(a, 2, 1) and Q (1, −1, 1) is 5 units, find the value of a


Write the coordinates of third vertex of a triangle having centroid at the origin and two vertices at (3, −5, 7) and (3, 0, 1). 


Find the distance of the point whose position vector is `(2hati + hatj - hatk)` from the plane `vecr * (hati - 2hatj + 4hatk)` = 9


Find the distance of the point (–1, –5, – 10) from the point of intersection of the line `vecr = 2hati - hatj + 2hatk + lambda(3hati + 4hatj + 2hatk)` and the plane `vecr * (hati - hatj + hatk)` = 5.


Prove that the line through A(0, –1, –1) and B(4, 5, 1) intersects the line through C(3, 9, 4) and D(– 4, 4, 4).


Find the equation of a plane which is at a distance `3sqrt(3)` units from origin and the normal to which is equally inclined to coordinate axis


Find the shortest distance between the lines given by `vecr = (8 + 3lambdahati - (9 + 16lambda)hatj + (10 + 7lambda)hatk` and `vecr = 15hati + 29hatj + 5hatk + mu(3hati + 8hatj - 5hatk)`


Find the equation of the plane through the intersection of the planes `vecr * (hati + 3hatj) - 6` = 0 and `vecr * (3hati + hatj + 4hatk)` = 0, whose perpendicular distance from origin is unity.


Distance of the point (α, β, γ) from y-axis is ______.


The distance of the plane `vecr * (2/4 hati + 3/7 hatj - 6/7hatk)` = 1 from the origin is ______.


If one of the diameters of the circle x2 + y2 – 2x – 6y + 6 = 0 is a chord of another circle 'C' whose center is at (2, 1), then its radius is ______.


The points A(5, –1, 1); B(7, –4, 7); C(1, –6, 10) and D(–1, –3, 4) are vertices of a ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×