English

Determine the points in xy-plan are equidistant from the points A(1, –1, 0), B(2, 1, 2) and C(3, 2, –1). - Mathematics

Advertisements
Advertisements

Question

Determine the points in xy-plan are equidistant from the points A(1, –1, 0), B(2, 1, 2) and C(3, 2, –1).

Solution

We know that the z-coordinate of every point on the xy-plane is zero.
 So, let P (xy, 0) be a point on the xy-plane such that PA PB = PC 
Now, PA PB

\[\Rightarrow P A^2 = P B^2 \]
\[ \Rightarrow \left( x - 1 \right)^2 + \left( y + 1 \right)^2 + \left( 0 - 0 \right)^2 = \left( x - 2 \right)^2 + \left( y - 1 \right)^2 + \left( 0 - 2 \right)^2 \]
\[ \Rightarrow x^2 - 2x + 1 + y^2 + 2y + 1 = x^2 - 4x + 4 + y^2 - 2y + 1 + 4\]
\[ \Rightarrow - 2x + 4x + 2y + 2y + 2 - 9 = 0\]
\[ \Rightarrow 2x + 4y - 7 = 0\]
\[ \Rightarrow 2x + 4y = 7 . . . (1)\]
\[ PB = PC\]
\[ \Rightarrow P B^2 = P C^2 \]
\[ \Rightarrow \left( x - 2 \right)^2 + \left( y - 1 \right)^2 + \left( 0 - 2 \right)^2 = \left( x - 3 \right)^2 + \left( y - 2 \right)^2 + \left( 0 + 1 \right)^2 \]
\[ \Rightarrow x^2 - 4x + 4 + y^2 - 2y + 1 + 4 = x^2 - 6x + 9 + y^2 - 4y + 4 + 1\]
\[ \Rightarrow - 4x + 6x - 2y + 4y + 9 - 14 = 0\]
\[ \Rightarrow 2x + 2y - 5 = 0\]
\[ \Rightarrow x + y = \frac{5}{2}\]
\[ \Rightarrow x = \frac{5}{2} - y . . . \left( 2 \right)\]
\[\text{ Putting the value of x in equation } \left( 1 \right): \]
\[ 2\left( \frac{5}{2} - y \right) + 4y = 7\]
\[ \Rightarrow 5 - 2y + 4y = 7\]
\[ \Rightarrow 5 + 2y = 7\]
\[ \Rightarrow 2y = 2\]
\[ \Rightarrow y = \frac{2}{2}\]
\[ \therefore y = 1\]
\[\text{ Putting the value of y in equation } \left( 2 \right): \]
\[x = \frac{5}{2} - 1\]
\[x = \frac{5 - 2}{2}\]
\[x = \frac{3}{2}\]
\[\text{ Hence, the required point is } \left( \frac{3}{2}, 1, 0 \right) . \]

shaalaa.com
  Is there an error in this question or solution?
Chapter 28: Introduction to three dimensional coordinate geometry - Exercise 28.2 [Page 9]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 28 Introduction to three dimensional coordinate geometry
Exercise 28.2 | Q 4.1 | Page 9

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the distance between the pairs of points:

(2, 3, 5) and (4, 3, 1)


Find the distance between the following pairs of points:

(–1, 3, –4) and (1, –3, 4)


Find the distance between the following pairs of points:

(2, –1, 3) and (–2, 1, 3)


Show that the points (–2, 3, 5), (1, 2, 3) and (7, 0, –1) are collinear.


Verify the following:

(–1, 2, 1), (1, –2, 5), (4, –7, 8) and (2, –3, 4) are the vertices of a parallelogram.


Find the equation of the set of points P, the sum of whose distances from A (4, 0, 0) and B (–4, 0, 0) is equal to 10.


Find the distance between the following pairs of points: 

P(1, –1, 0) and Q(2, 1, 2)


Find the distance between the following pairs of point: 

A(3, 2, –1) and B(–1, –1, –1).


Find the distance between the points P and Q having coordinates (–2, 3, 1) and (2, 1, 2).


Using distance formula prove that the following points are collinear:

A(4, –3, –1), B(5, –7, 6) and C(3, 1, –8)


Using distance formula prove that the following points are collinear: 

A(3, –5, 1), B(–1, 0, 8) and C(7, –10, –6)


Show that the points A(1, 3, 4), B(–1, 6, 10), C(–7, 4, 7) and D(–5, 1, 1) are the vertices of a rhombus. 


Show that the points (3, 2, 2), (–1, 4, 2), (0, 5, 6), (2, 1, 2) lie on a sphere whose centre is (1, 3, 4). Find also its radius.


Find the centroid of a triangle, mid-points of whose sides are (1, 2, –3), (3, 0, 1) and (–1, 1, –4). 


The centroid of a triangle ABC is at the point (1, 1, 1). If the coordinates of and are (3, –5, 7) and (–1, 7, –6) respectively, find the coordinates of the point C.


If the distance between the points P(a, 2, 1) and Q (1, −1, 1) is 5 units, find the value of a


Write the coordinates of third vertex of a triangle having centroid at the origin and two vertices at (3, −5, 7) and (3, 0, 1). 


Find the distance of the point whose position vector is `(2hati + hatj - hatk)` from the plane `vecr * (hati - 2hatj + 4hatk)` = 9


Find the distance of the point (–1, –5, – 10) from the point of intersection of the line `vecr = 2hati - hatj + 2hatk + lambda(3hati + 4hatj + 2hatk)` and the plane `vecr * (hati - hatj + hatk)` = 5.


The distance of a point P(a, b, c) from x-axis is ______.


Find the angle between the lines `vecr = 3hati - 2hatj + 6hatk + lambda(2hati + hatj + 2hatk)` and `vecr = (2hatj - 5hatk) + mu(6hati + 3hatj + 2hatk)`


Prove that the line through A(0, –1, –1) and B(4, 5, 1) intersects the line through C(3, 9, 4) and D(– 4, 4, 4).


Find the distance of a point (2, 4, –1) from the line `(x + 5)/1 = (y + 3)/4 = (z - 6)/(-9)`


Find the shortest distance between the lines given by `vecr = (8 + 3lambdahati - (9 + 16lambda)hatj + (10 + 7lambda)hatk` and `vecr = 15hati + 29hatj + 5hatk + mu(3hati + 8hatj - 5hatk)`


Find the equation of the plane through the intersection of the planes `vecr * (hati + 3hatj) - 6` = 0 and `vecr * (3hati + hatj + 4hatk)` = 0, whose perpendicular distance from origin is unity.


If one of the diameters of the circle x2 + y2 – 2x – 6y + 6 = 0 is a chord of another circle 'C' whose center is at (2, 1), then its radius is ______.


The points A(5, –1, 1); B(7, –4, 7); C(1, –6, 10) and D(–1, –3, 4) are vertices of a ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×