English

Write the Coordinates of Third Vertex of a Triangle Having Centroid at the Origin and Two Vertices at (3, −5, 7) and (3, 0, 1). - Mathematics

Advertisements
Advertisements

Question

Write the coordinates of third vertex of a triangle having centroid at the origin and two vertices at (3, −5, 7) and (3, 0, 1). 

Solution

Let the coordinates of third vertex  be (x1y1z1)
Now, 

\[\frac{x_1 + 3 + 3}{3} = 0, \frac{y_1 - 5 + 0}{3} = 0 \text{ and } \frac{z_1 + 7 + 1}{3} = 0\]
\[ \Rightarrow x_1 = - 6, y_1 = 5 \text{ and } z_1 = - 8\]

Hence, the coordinates of third vertex of a triangle  is (−6, 5, −8).

shaalaa.com
  Is there an error in this question or solution?
Chapter 28: Introduction to three dimensional coordinate geometry - Exercise 28.4 [Page 22]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 28 Introduction to three dimensional coordinate geometry
Exercise 28.4 | Q 7 | Page 22

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the distance between the following pairs of points:

(–3, 7, 2) and (2, 4, –1)


Find the distance between the following pairs of points:

(–1, 3, –4) and (1, –3, 4)


Show that the points (–2, 3, 5), (1, 2, 3) and (7, 0, –1) are collinear.


Verify the following:

(0, 7, 10), (–1, 6, 6) and (–4, 9, 6) are the vertices of a right angled triangle.


Verify the following:

(–1, 2, 1), (1, –2, 5), (4, –7, 8) and (2, –3, 4) are the vertices of a parallelogram.


Find the equation of the set of points which are equidistant from the points (1, 2, 3) and (3, 2, –1).


Find the distance between the following pairs of points: 

P(1, –1, 0) and Q(2, 1, 2)


Find the distance between the points P and Q having coordinates (–2, 3, 1) and (2, 1, 2).


Using distance formula prove that the following points are collinear:

A(4, –3, –1), B(5, –7, 6) and C(3, 1, –8)


Using distance formula prove that the following points are collinear: 

P(0, 7, –7), Q(1, 4, –5) and R(–1, 10, –9)


Using distance formula prove that the following points are collinear: 

A(3, –5, 1), B(–1, 0, 8) and C(7, –10, –6)


Determine the points in xy-plan are equidistant from the points A(1, –1, 0), B(2, 1, 2) and C(3, 2, –1).


Determine the points in yz-plane and are equidistant from the points A(1, –1, 0), B(2, 1, 2) and C(3, 2, –1).


Show that the points (0, 7, 10), (–1, 6, 6) and (–4, 9, 6) are the vertices of an isosceles right-angled triangle. 


Show that the points A(1, 3, 4), B(–1, 6, 10), C(–7, 4, 7) and D(–5, 1, 1) are the vertices of a rhombus. 


Prove that the tetrahedron with vertices at the points O(0, 0, 0), A(0, 1, 1), B(1, 0, 1) and C(1, 1, 0) is a regular one.


Show that the points (3, 2, 2), (–1, 4, 2), (0, 5, 6), (2, 1, 2) lie on a sphere whose centre is (1, 3, 4). Find also its radius.


Find the centroid of a triangle, mid-points of whose sides are (1, 2, –3), (3, 0, 1) and (–1, 1, –4). 


Find the distance of the point whose position vector is `(2hati + hatj - hatk)` from the plane `vecr * (hati - 2hatj + 4hatk)` = 9


Find the distance of the point (–1, –5, – 10) from the point of intersection of the line `vecr = 2hati - hatj + 2hatk + lambda(3hati + 4hatj + 2hatk)` and the plane `vecr * (hati - hatj + hatk)` = 5.


Find the angle between the lines `vecr = 3hati - 2hatj + 6hatk + lambda(2hati + hatj + 2hatk)` and `vecr = (2hatj - 5hatk) + mu(6hati + 3hatj + 2hatk)`


Prove that the line through A(0, –1, –1) and B(4, 5, 1) intersects the line through C(3, 9, 4) and D(– 4, 4, 4).


The distance of the plane `vecr * (2/4 hati + 3/7 hatj - 6/7hatk)` = 1 from the origin is ______.


If one of the diameters of the circle x2 + y2 – 2x – 6y + 6 = 0 is a chord of another circle 'C' whose center is at (2, 1), then its radius is ______.


The points A(5, –1, 1); B(7, –4, 7); C(1, –6, 10) and D(–1, –3, 4) are vertices of a ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×