मराठी

Write the Coordinates of Third Vertex of a Triangle Having Centroid at the Origin and Two Vertices at (3, −5, 7) and (3, 0, 1). - Mathematics

Advertisements
Advertisements

प्रश्न

Write the coordinates of third vertex of a triangle having centroid at the origin and two vertices at (3, −5, 7) and (3, 0, 1). 

उत्तर

Let the coordinates of third vertex  be (x1y1z1)
Now, 

\[\frac{x_1 + 3 + 3}{3} = 0, \frac{y_1 - 5 + 0}{3} = 0 \text{ and } \frac{z_1 + 7 + 1}{3} = 0\]
\[ \Rightarrow x_1 = - 6, y_1 = 5 \text{ and } z_1 = - 8\]

Hence, the coordinates of third vertex of a triangle  is (−6, 5, −8).

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 28: Introduction to three dimensional coordinate geometry - Exercise 28.4 [पृष्ठ २२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 28 Introduction to three dimensional coordinate geometry
Exercise 28.4 | Q 7 | पृष्ठ २२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the distance between the pairs of points:

(2, 3, 5) and (4, 3, 1)


Find the distance between the following pairs of points:

(–3, 7, 2) and (2, 4, –1)


Show that the points (–2, 3, 5), (1, 2, 3) and (7, 0, –1) are collinear.


Verify the following:

(–1, 2, 1), (1, –2, 5), (4, –7, 8) and (2, –3, 4) are the vertices of a parallelogram.


Find the equation of the set of points which are equidistant from the points (1, 2, 3) and (3, 2, –1).


Find the equation of the set of points P, the sum of whose distances from A (4, 0, 0) and B (–4, 0, 0) is equal to 10.


Find the distance between the following pairs of points: 

P(1, –1, 0) and Q(2, 1, 2)


Find the distance between the following pairs of point: 

A(3, 2, –1) and B(–1, –1, –1).


Find the distance between the points P and Q having coordinates (–2, 3, 1) and (2, 1, 2).


Using distance formula prove that the following points are collinear:

A(4, –3, –1), B(5, –7, 6) and C(3, 1, –8)


Using distance formula prove that the following points are collinear: 

P(0, 7, –7), Q(1, 4, –5) and R(–1, 10, –9)


Using distance formula prove that the following points are collinear: 

A(3, –5, 1), B(–1, 0, 8) and C(7, –10, –6)


Determine the points in xy-plan are equidistant from the points A(1, –1, 0), B(2, 1, 2) and C(3, 2, –1).


Determine the points in yz-plane and are equidistant from the points A(1, –1, 0), B(2, 1, 2) and C(3, 2, –1).


Prove that the tetrahedron with vertices at the points O(0, 0, 0), A(0, 1, 1), B(1, 0, 1) and C(1, 1, 0) is a regular one.


Show that the points (3, 2, 2), (–1, 4, 2), (0, 5, 6), (2, 1, 2) lie on a sphere whose centre is (1, 3, 4). Find also its radius.


Find the centroid of a triangle, mid-points of whose sides are (1, 2, –3), (3, 0, 1) and (–1, 1, –4). 


If the distance between the points P(a, 2, 1) and Q (1, −1, 1) is 5 units, find the value of a


Find the distance of the point whose position vector is `(2hati + hatj - hatk)` from the plane `vecr * (hati - 2hatj + 4hatk)` = 9


Find the distance of the point (– 2, 4, – 5) from the line `(x + 3)/3 = (y - 4)/5 = (z + 8)/6`


Find the distance of the point (–1, –5, – 10) from the point of intersection of the line `vecr = 2hati - hatj + 2hatk + lambda(3hati + 4hatj + 2hatk)` and the plane `vecr * (hati - hatj + hatk)` = 5.


The distance of a point P(a, b, c) from x-axis is ______.


Find the angle between the lines `vecr = 3hati - 2hatj + 6hatk + lambda(2hati + hatj + 2hatk)` and `vecr = (2hatj - 5hatk) + mu(6hati + 3hatj + 2hatk)`


Prove that the line through A(0, –1, –1) and B(4, 5, 1) intersects the line through C(3, 9, 4) and D(– 4, 4, 4).


Distance of the point (α, β, γ) from y-axis is ______.


The distance of the plane `vecr * (2/4 hati + 3/7 hatj - 6/7hatk)` = 1 from the origin is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×