English

Find the equation of a plane which is at a distance 33 units from origin and the normal to which is equally inclined to coordinate axis - Mathematics

Advertisements
Advertisements

Question

Find the equation of a plane which is at a distance `3sqrt(3)` units from origin and the normal to which is equally inclined to coordinate axis

Sum

Solution

If α, β, and γ are the angles made by the line segment with the coordinate axis.
 
cosα, cosβ and cosγ are called as the direction cosines.
 
Let the required equation of the plane be `vecr * hatn` = p, where p = `3sqrt(3)`.
 
Let `vecn = (cosalpha)hati + (cosalpha)hatj + (cosalpha)hatk`, where α is acute.
 
Then, `cos^2alpha + cos^2alpha + cos^2alpha` = 1
 
⇒ `3cos^2alpha` = 1
 
⇒ `cos^2alpha = 1/3`
 
⇒ `cos alpha = 1/sqrt(3)`
 
∴ The required equation is `vecr * (1/sqrt(3)hati + 1/sqrt(3)hatj + 1/sqrt(3)hatk) = 3sqrt(3)`
 
Hence, `vecr * (hati + hatj + hatk)` = 9
 
⇒ `(xhati + yhatj + zhatk) * (hati + hatj + hatk)` = 9
 
⇒ x + y + z = 9. 
shaalaa.com
  Is there an error in this question or solution?
Chapter 12: Introduction to Three Dimensional Geometry - Exercise [Page 235]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 12 Introduction to Three Dimensional Geometry
Exercise | Q 8 | Page 235

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the distance between the pairs of points:

(2, 3, 5) and (4, 3, 1)


Find the distance between the following pairs of points:

(–3, 7, 2) and (2, 4, –1)


Find the distance between the following pairs of points:

(–1, 3, –4) and (1, –3, 4)


Find the distance between the following pairs of points:

(2, –1, 3) and (–2, 1, 3)


Verify the following:

(0, 7, –10), (1, 6, –6) and (4, 9, –6) are the vertices of an isosceles triangle.


Verify the following:

(0, 7, 10), (–1, 6, 6) and (–4, 9, 6) are the vertices of a right angled triangle.


Find the equation of the set of points P, the sum of whose distances from A (4, 0, 0) and B (–4, 0, 0) is equal to 10.


Find the distance between the following pairs of points: 

P(1, –1, 0) and Q(2, 1, 2)


Find the distance between the following pairs of point: 

A(3, 2, –1) and B(–1, –1, –1).


Using distance formula prove that the following points are collinear:

A(4, –3, –1), B(5, –7, 6) and C(3, 1, –8)


Using distance formula prove that the following points are collinear: 

A(3, –5, 1), B(–1, 0, 8) and C(7, –10, –6)


Determine the points in xy-plan are equidistant from the points A(1, –1, 0), B(2, 1, 2) and C(3, 2, –1).


Determine the points in yz-plane and are equidistant from the points A(1, –1, 0), B(2, 1, 2) and C(3, 2, –1).


Show that the points (0, 7, 10), (–1, 6, 6) and (–4, 9, 6) are the vertices of an isosceles right-angled triangle. 


Show that the points A(1, 3, 4), B(–1, 6, 10), C(–7, 4, 7) and D(–5, 1, 1) are the vertices of a rhombus. 


Prove that the tetrahedron with vertices at the points O(0, 0, 0), A(0, 1, 1), B(1, 0, 1) and C(1, 1, 0) is a regular one.


If the distance between the points P(a, 2, 1) and Q (1, −1, 1) is 5 units, find the value of a


Write the coordinates of third vertex of a triangle having centroid at the origin and two vertices at (3, −5, 7) and (3, 0, 1). 


Find the distance of the point (–1, –5, – 10) from the point of intersection of the line `vecr = 2hati - hatj + 2hatk + lambda(3hati + 4hatj + 2hatk)` and the plane `vecr * (hati - hatj + hatk)` = 5.


The distance of a point P(a, b, c) from x-axis is ______.


Find the distance of a point (2, 4, –1) from the line `(x + 5)/1 = (y + 3)/4 = (z - 6)/(-9)`


Find the equation of the plane through the intersection of the planes `vecr * (hati + 3hatj) - 6` = 0 and `vecr * (3hati + hatj + 4hatk)` = 0, whose perpendicular distance from origin is unity.


Distance of the point (α, β, γ) from y-axis is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×