हिंदी

Find the equation of a plane which is at a distance 33 units from origin and the normal to which is equally inclined to coordinate axis - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of a plane which is at a distance `3sqrt(3)` units from origin and the normal to which is equally inclined to coordinate axis

योग

उत्तर

If α, β, and γ are the angles made by the line segment with the coordinate axis.
 
cosα, cosβ and cosγ are called as the direction cosines.
 
Let the required equation of the plane be `vecr * hatn` = p, where p = `3sqrt(3)`.
 
Let `vecn = (cosalpha)hati + (cosalpha)hatj + (cosalpha)hatk`, where α is acute.
 
Then, `cos^2alpha + cos^2alpha + cos^2alpha` = 1
 
⇒ `3cos^2alpha` = 1
 
⇒ `cos^2alpha = 1/3`
 
⇒ `cos alpha = 1/sqrt(3)`
 
∴ The required equation is `vecr * (1/sqrt(3)hati + 1/sqrt(3)hatj + 1/sqrt(3)hatk) = 3sqrt(3)`
 
Hence, `vecr * (hati + hatj + hatk)` = 9
 
⇒ `(xhati + yhatj + zhatk) * (hati + hatj + hatk)` = 9
 
⇒ x + y + z = 9. 
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Introduction to Three Dimensional Geometry - Exercise [पृष्ठ २३५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 12 Introduction to Three Dimensional Geometry
Exercise | Q 8 | पृष्ठ २३५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the distance between the following pairs of points:

(–3, 7, 2) and (2, 4, –1)


Find the distance between the following pairs of points:

(–1, 3, –4) and (1, –3, 4)


Show that the points (–2, 3, 5), (1, 2, 3) and (7, 0, –1) are collinear.


Verify the following:

(0, 7, –10), (1, 6, –6) and (4, 9, –6) are the vertices of an isosceles triangle.


Verify the following:

(0, 7, 10), (–1, 6, 6) and (–4, 9, 6) are the vertices of a right angled triangle.


Verify the following:

(–1, 2, 1), (1, –2, 5), (4, –7, 8) and (2, –3, 4) are the vertices of a parallelogram.


Find the equation of the set of points P, the sum of whose distances from A (4, 0, 0) and B (–4, 0, 0) is equal to 10.


Find the distance between the following pairs of points: 

P(1, –1, 0) and Q(2, 1, 2)


Determine the points in yz-plane and are equidistant from the points A(1, –1, 0), B(2, 1, 2) and C(3, 2, –1).


Show that the points (0, 7, 10), (–1, 6, 6) and (–4, 9, 6) are the vertices of an isosceles right-angled triangle. 


Prove that the tetrahedron with vertices at the points O(0, 0, 0), A(0, 1, 1), B(1, 0, 1) and C(1, 1, 0) is a regular one.


Show that the points (3, 2, 2), (–1, 4, 2), (0, 5, 6), (2, 1, 2) lie on a sphere whose centre is (1, 3, 4). Find also its radius.


Write the coordinates of third vertex of a triangle having centroid at the origin and two vertices at (3, −5, 7) and (3, 0, 1). 


Find the distance of the point whose position vector is `(2hati + hatj - hatk)` from the plane `vecr * (hati - 2hatj + 4hatk)` = 9


Find the distance of the point (– 2, 4, – 5) from the line `(x + 3)/3 = (y - 4)/5 = (z + 8)/6`


The distance of a point P(a, b, c) from x-axis is ______.


Prove that the line through A(0, –1, –1) and B(4, 5, 1) intersects the line through C(3, 9, 4) and D(– 4, 4, 4).


Find the distance of a point (2, 4, –1) from the line `(x + 5)/1 = (y + 3)/4 = (z - 6)/(-9)`


Find the shortest distance between the lines given by `vecr = (8 + 3lambdahati - (9 + 16lambda)hatj + (10 + 7lambda)hatk` and `vecr = 15hati + 29hatj + 5hatk + mu(3hati + 8hatj - 5hatk)`


Find the equation of the plane through the intersection of the planes `vecr * (hati + 3hatj) - 6` = 0 and `vecr * (3hati + hatj + 4hatk)` = 0, whose perpendicular distance from origin is unity.


Distance of the point (α, β, γ) from y-axis is ______.


The distance of the plane `vecr * (2/4 hati + 3/7 hatj - 6/7hatk)` = 1 from the origin is ______.


The points A(5, –1, 1); B(7, –4, 7); C(1, –6, 10) and D(–1, –3, 4) are vertices of a ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×