Advertisements
Advertisements
Question
Find the coordinates of the point where the line through (3, – 4, – 5) and (2, –3, 1) crosses the plane passing through three points (2, 2, 1), (3, 0, 1) and (4, –1, 0)
Solution
Equation of plane through three points (2, 2, 1), (3, 0, 1) and (4, –1, 0) is
`[(vecr - (2hati + 2hatj + hatk)]*[(hati - 2hatj) xx (hati - hatj - hatk)]` = 0
i.e. `vecr*(2hati + hatj + hatk)` = 7 or 2x + y + z – 7 = 0 ......(1)
Equation of line through (3, – 4, – 5) and (2, – 3, 1) is
`(x - 3)/(-1) = (y + 4)/1 = (z + 5)/6` ......(2)
Any point on line (2) is `(-lambda + 3, lambda - 4, 6lambda - 5)`.
This point lies on plane (1).
Therefore, `2(-lambda + 3) + (lambda - 4) + (6lambda - 5) - 7` = 0
i.e., `lambda` = z
Hence the required point is (1, – 2, 7).
APPEARS IN
RELATED QUESTIONS
The x-axis and y-axis taken together determine a plane known as_______.
Coordinate planes divide the space into ______ octants.
If the origin is the centroid of the triangle PQR with vertices P (2a, 2, 6), Q (–4, 3b, –10) and R (8, 14, 2c), then find the values of a, b and c.
Name the octants in which the following points lie:
(4, –3, 5)
A cube of side 5 has one vertex at the point (1, 0, –1), and the three edges from this vertex are, respectively, parallel to the negative x and y axes and positive z-axis. Find the coordinates of the other vertices of the cube.
Planes are drawn parallel to the coordinate planes through the points (3, 0, –1) and (–2, 5, 4). Find the lengths of the edges of the parallelepiped so formed.
Planes are drawn through the points (5, 0, 2) and (3, –2, 5) parallel to the coordinate planes. Find the lengths of the edges of the rectangular parallelepiped so formed.
Find the distances of the point P(–4, 3, 5) from the coordinate axes.
Determine the points in zx-plane are equidistant from the points A(1, –1, 0), B(2, 1, 2) and C(3, 2, –1).
Show that the points (a, b, c), (b, c, a) and (c, a, b) are the vertices of an equilateral triangle.
The coordinates of the mid-points of sides AB, BC and CA of △ABC are D(1, 2, −3), E(3, 0,1) and F(−1, 1, −4) respectively. Write the coordinates of its centroid.
Write the length of the perpendicular drawn from the point P(3, 5, 12) on x-axis.
Find the ratio in which the line segment joining the points (2, 4,5) and (3, −5, 4) is divided by the yz-plane.
Find the point on x-axis which is equidistant from the points A (3, 2, 2) and B (5, 5, 4).
The ratio in which the line joining (2, 4, 5) and (3, 5, –9) is divided by the yz-plane is
The ratio in which the line joining the points (a, b, c) and (–a, –c, –b) is divided by the xy-plane is
The perpendicular distance of the point P (6, 7, 8) from xy - plane is
The perpendicular distance of the point P(3, 3,4) from the x-axis is
If the direction ratios of a line are 1, 1, 2, find the direction cosines of the line.
Find the image of the point (1, 6, 3) in the line `x/1 = (y - 1)/2 = (z - 2)/3`
A line makes equal angles with co-ordinate axis. Direction cosines of this line are ______.
If the line drawn from the point (–2, – 1, – 3) meets a plane at right angle at the point (1, – 3, 3), find the equation of the plane
Two systems of rectangular axis have the same origin. If a plane cuts them at distances a, b, c and a′, b′, c′, respectively, from the origin, prove that
`1/a^2 + 1/b^2 + 1/c^2 = 1/(a"'"^2) + 1/(b"'"^2) + 1/(c"'"^2)`
Find the equations of the line passing through the point (3,0,1) and parallel to the planes x + 2y = 0 and 3y – z = 0.
The area of the quadrilateral ABCD, where A(0, 4, 1), B(2, 3, –1), C(4, 5, 0) and D(2, 6, 2), is equal to ______.
The cartesian equation of the plane `vecr * (hati + hatj - hatk)` is ______.
The angle between the planes `vecr.(2hati - 3hatj + hatk)` = 1 and `vecr.(hati - hatj)` = 4 is `cos^-1((-5)/sqrt(58))`.