Advertisements
Advertisements
Question
If the direction ratios of a line are 1, 1, 2, find the direction cosines of the line.
Solution
The direction cosines are given by
`l = a/sqrt(a^2 + b^2 + c^2)`
`m = b/sqrt(a^2 + b^2 + c^2)`
`n = c/sqrt(a^2 + b^2 + c^2)`
Here a, b, c are 1, 1, 2, respectively
Therefore, `l = 1/sqrt(1^2 + 1^2 + 2)`
`m = 1/sqrt(1^2 + 1^2 + 2^2)`
`n = 2/sqrt(1^2 + 1^2 + 2^2)`
i.e., `l = 1/sqrt(6)`
`m = 1/sqrt(6)`
`n = 2/sqrt(6)`
i.e. `+-(1/sqrt(6), 1/sqrt(6), 2/sqrt(6))` are D.C’s of the line.
APPEARS IN
RELATED QUESTIONS
Name the octants in which the following points lie: (5, 2, 3)
Name the octants in which the following points lie:
(4, –3, 5)
Name the octants in which the following points lie:
(7, 4, –3)
Name the octants in which the following points lie:
(–7, 2 – 5)
Find the image of:
(5, 2, –7) in the xy-plane.
Planes are drawn parallel to the coordinate planes through the points (3, 0, –1) and (–2, 5, 4). Find the lengths of the edges of the parallelepiped so formed.
The coordinates of a point are (3, –2, 5). Write down the coordinates of seven points such that the absolute values of their coordinates are the same as those of the coordinates of the given point.
Determine the points in zx-plane are equidistant from the points A(1, –1, 0), B(2, 1, 2) and C(3, 2, –1).
Find the locus of the point, the sum of whose distances from the points A(4, 0, 0) and B(–4, 0, 0) is equal to 10.
Show that the points A(1, 2, 3), B(–1, –2, –1), C(2, 3, 2) and D(4, 7, 6) are the vertices of a parallelogram ABCD, but not a rectangle.
The coordinates of the mid-points of sides AB, BC and CA of △ABC are D(1, 2, −3), E(3, 0,1) and F(−1, 1, −4) respectively. Write the coordinates of its centroid.
Find the point on y-axis which is at a distance of \[\sqrt{10}\] units from the point (1, 2, 3).
The ratio in which the line joining the points (a, b, c) and (–a, –c, –b) is divided by the xy-plane is
Let (3, 4, –1) and (–1, 2, 3) be the end points of a diameter of a sphere. Then, the radius of the sphere is equal to
XOZ-plane divides the join of (2, 3, 1) and (6, 7, 1) in the ratio
What is the locus of a point for which y = 0, z = 0?
The perpendicular distance of the point P (6, 7, 8) from xy - plane is
If a line makes an angle of 30°, 60°, 90° with the positive direction of x, y, z-axes, respectively, then find its direction cosines.
A plane meets the co-ordinates axis in A, B, C such that the centroid of the ∆ABC is the point (α, β, γ). Show that the equation of the plane is `x/alpha + y/beta + z/γ` = 3
Find the image of the point having position vector `hati + 3hatj + 4hatk` in the plane `hatr * (2hati - hatj + hatk)` + 3 = 0.
Find the equation of a plane which bisects perpendicularly the line joining the points A(2, 3, 4) and B(4, 5, 8) at right angles.
If the line drawn from the point (–2, – 1, – 3) meets a plane at right angle at the point (1, – 3, 3), find the equation of the plane
Find the angle between the lines whose direction cosines are given by the equations l + m + n = 0, l2 + m2 – n2 = 0
Show that the straight lines whose direction cosines are given by 2l + 2m – n = 0 and mn + nl + lm = 0 are at right angles.
The area of the quadrilateral ABCD, where A(0, 4, 1), B(2, 3, –1), C(4, 5, 0) and D(2, 6, 2), is equal to ______.
The plane 2x – 3y + 6z – 11 = 0 makes an angle sin–1(α) with x-axis. The value of α is equal to ______.
The intercepts made by the plane 2x – 3y + 5z +4 = 0 on the co-ordinate axis are `-2, 4/3, - 4/5`.