Advertisements
Advertisements
Question
Find the direction cosines of the line passing through the points P(2, 3, 5) and Q(–1, 2, 4).
Solution
The direction cosines of a line passing through the points P(x1, y1, z1) and Q(x2, y2, z2) are
`(x_2 - x_1)/"PQ", (y_2 - y_1)/"PQ", (z_2 - z_1)/"PQ"`
Here PQ = `sqrt((x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2)`
= `sqrt((-1 - 2)^2 + (2 - 3)^2 + (4 - 5)^2)`
= `sqrt(9 + 1 + 1)`
= `sqrt(11)`
Hence D.C.'s are `+-((-3)/sqrt(11), (-1)/sqrt(11), (-1)/sqrt(11))` or `+-(3/sqrt(11), 1/sqrt(11), 1/sqrt(11))`
APPEARS IN
RELATED QUESTIONS
If the origin is the centroid of the triangle PQR with vertices P (2a, 2, 6), Q (–4, 3b, –10) and R (8, 14, 2c), then find the values of a, b and c.
Name the octants in which the following points lie:
(–5, 4, 3)
Name the octants in which the following points lie:
(7, 4, –3)
Find the image of:
(–5, 4, –3) in the xz-plane.
Find the image of:
(–4, 0, 0) in the xy-plane.
Determine the points in zx-plane are equidistant from the points A(1, –1, 0), B(2, 1, 2) and C(3, 2, –1).
Determine the point on z-axis which is equidistant from the points (1, 5, 7) and (5, 1, –4).
Prove that the triangle formed by joining the three points whose coordinates are (1, 2, 3), (2, 3, 1) and (3, 1, 2) is an equilateral triangle.
Prove that the point A(1, 3, 0), B(–5, 5, 2), C(–9, –1, 2) and D(–3, –3, 0) taken in order are the vertices of a parallelogram. Also, show that ABCD is not a rectangle.
Show that the points (a, b, c), (b, c, a) and (c, a, b) are the vertices of an equilateral triangle.
Verify the following:
(0, 7, –10), (1, 6, –6) and (4, 9, –6) are vertices of an isosceles triangle.
Find the locus of the points which are equidistant from the points (1, 2, 3) and (3, 2, –1).
Find the ratio in which the sphere x2 + y2 + z2 = 504 divides the line joining the points (12, –4, 8) and (27, –9, 18).
Show that the plane ax + by + cz + d = 0 divides the line joining the points (x1, y1, z1) and (x2, y2, z2) in the ratio \[- \frac{a x_1 + b y_1 + c z_1 + d}{a x_2 + b y_2 + c z_2 + d}\]
The coordinates of the mid-points of sides AB, BC and CA of △ABC are D(1, 2, −3), E(3, 0,1) and F(−1, 1, −4) respectively. Write the coordinates of its centroid.
The ratio in which the line joining (2, 4, 5) and (3, 5, –9) is divided by the yz-plane is
What is the locus of a point for which y = 0, z = 0?
The perpendicular distance of the point P(3, 3,4) from the x-axis is
Find the co-ordinates of the foot of perpendicular drawn from the point A(1, 8, 4) to the line joining the points B(0, –1, 3) and C(2, –3, –1).
Find the image of the point (1, 6, 3) in the line `x/1 = (y - 1)/2 = (z - 2)/3`
If a line makes angles α, β, γ with the positive directions of the coordinate axes, then the value of sin2α + sin2β + sin2γ is ______.
If a line makes an angle of `pi/4` with each of y and z axis, then the angle which it makes with x-axis is ______.
If the line drawn from the point (–2, – 1, – 3) meets a plane at right angle at the point (1, – 3, 3), find the equation of the plane
Find the equation of the plane through the points (2, 1, 0), (3, –2, –2) and (3, 1, 7).
Find the angle between the lines whose direction cosines are given by the equations l + m + n = 0, l2 + m2 – n2 = 0
Two systems of rectangular axis have the same origin. If a plane cuts them at distances a, b, c and a′, b′, c′, respectively, from the origin, prove that
`1/a^2 + 1/b^2 + 1/c^2 = 1/(a"'"^2) + 1/(b"'"^2) + 1/(c"'"^2)`
If l1, m1, n1 ; l2, m2, n2 ; l3, m3, n3 are the direction cosines of three mutually perpendicular lines, prove that the line whose direction cosines are proportional to l1 + l2 + l3, m1 + m2 + m3, n1 + n2 + n3 makes equal angles with them.
The line `vecr = 2hati - 3hatj - hatk + lambda(hati - hatj + 2hatk)` lies in the plane `vecr.(3hati + hatj - hatk) + 2` = 0.